more fixes

This commit is contained in:
Patrick von Platen 2022-06-22 13:40:08 +00:00
parent e45dae7dc0
commit 48269070d2
13 changed files with 59 additions and 69 deletions

View File

@ -249,24 +249,24 @@ image_pil = PIL.Image.fromarray(image_processed[0])
image_pil.save("test.png")
```
#### **Text to speech with GradTTS and BDDM**
#### **Text to speech with GradTTS and BDDMPipeline**
```python
import torch
from diffusers import BDDM, GradTTS
from diffusers import BDDMPipeline, GradTTS
torch_device = "cuda"
# load grad tts and bddm pipelines
grad_tts = GradTTS.from_pretrained("fusing/grad-tts-libri-tts")
bddm = BDDM.from_pretrained("fusing/diffwave-vocoder-ljspeech")
bddm = BDDMPipeline.from_pretrained("fusing/diffwave-vocoder-ljspeech")
text = "Hello world, I missed you so much."
# generate mel spectograms using text
mel_spec = grad_tts(text, torch_device=torch_device)
# generate the speech by passing mel spectograms to BDDM pipeline
# generate the speech by passing mel spectograms to BDDMPipeline pipeline
generator = torch.manual_seed(42)
audio = bddm(mel_spec, generator, torch_device=torch_device)

View File

@ -11,19 +11,19 @@ from .models.unet import UNetModel
from .models.unet_ldm import UNetLDMModel
from .models.unet_rl import TemporalUNet
from .pipeline_utils import DiffusionPipeline
from .pipelines import BDDM, DDIM, DDPM, PNDM
from .pipelines import BDDMPipeline, DDIMPipeline, DDPMPipeline, PNDMPipeline
from .schedulers import DDIMScheduler, DDPMScheduler, GradTTSScheduler, PNDMScheduler, SchedulerMixin
if is_transformers_available():
from .models.unet_glide import GlideSuperResUNetModel, GlideTextToImageUNetModel, GlideUNetModel
from .models.unet_grad_tts import UNetGradTTSModel
from .pipelines import Glide, LatentDiffusion
from .pipelines import GlidePipeline, LatentDiffusionPipeline
else:
from .utils.dummy_transformers_objects import *
if is_transformers_available() and is_inflect_available() and is_unidecode_available():
from .pipelines import GradTTS
from .pipelines import GradTTSPipeline
else:
from .utils.dummy_transformers_and_inflect_and_unidecode_objects import *

View File

@ -21,7 +21,6 @@ from typing import Optional, Union
from huggingface_hub import snapshot_download
from .configuration_utils import ConfigMixin
from .dynamic_modules_utils import get_class_from_dynamic_module
from .utils import DIFFUSERS_CACHE, logging
@ -81,9 +80,6 @@ class DiffusionPipeline(ConfigMixin):
# set models
setattr(self, name, module)
register_dict = {"_module": self.__module__.split(".")[-1]}
self.register_to_config(**register_dict)
def save_pretrained(self, save_directory: Union[str, os.PathLike]):
self.save_config(save_directory)
@ -139,11 +135,7 @@ class DiffusionPipeline(ConfigMixin):
config_dict = cls.get_config_dict(cached_folder)
# 2. Get class name and module candidates to load custom models
module_candidate_name = config_dict["_module"]
module_candidate = module_candidate_name + ".py"
# 3. Load the pipeline class, if using custom module then load it from the hub
# 2. Load the pipeline class, if using custom module then load it from the hub
# if we load from explicit class, let's use it
if cls != DiffusionPipeline:
pipeline_class = cls
@ -151,11 +143,6 @@ class DiffusionPipeline(ConfigMixin):
diffusers_module = importlib.import_module(cls.__module__.split(".")[0])
pipeline_class = getattr(diffusers_module, config_dict["_class_name"])
# (TODO - we should allow to load custom pipelines
# else we need to load the correct module from the Hub
# module = module_candidate
# pipeline_class = get_class_from_dynamic_module(cached_folder, module, class_name_, cached_folder)
init_dict, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
init_kwargs = {}
@ -163,7 +150,7 @@ class DiffusionPipeline(ConfigMixin):
# import it here to avoid circular import
from diffusers import pipelines
# 4. Load each module in the pipeline
# 3. Load each module in the pipeline
for name, (library_name, class_name) in init_dict.items():
is_pipeline_module = hasattr(pipelines, library_name)
# if the model is in a pipeline module, then we load it from the pipeline
@ -171,14 +158,7 @@ class DiffusionPipeline(ConfigMixin):
pipeline_module = getattr(pipelines, library_name)
class_obj = getattr(pipeline_module, class_name)
importable_classes = ALL_IMPORTABLE_CLASSES
class_candidates = {c: class_obj for c in ALL_IMPORTABLE_CLASSES.keys()}
elif library_name == module_candidate_name:
# if the model is not in diffusers or transformers, we need to load it from the hub
# assumes that it's a subclass of ModelMixin
class_obj = get_class_from_dynamic_module(cached_folder, module_candidate, class_name, cached_folder)
# since it's not from a library, we need to check class candidates for all importable classes
importable_classes = ALL_IMPORTABLE_CLASSES
class_candidates = {c: class_obj for c in ALL_IMPORTABLE_CLASSES.keys()}
class_candidates = {c: class_obj for c in importable_classes.keys()}
else:
# else we just import it from the library.
library = importlib.import_module(library_name)

View File

@ -15,5 +15,5 @@ TODO(Patrick, Anton, Suraj)
- PNDM for unconditional image generation in [pipeline_pndm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_pndm.py).
- Latent diffusion for text to image generation / conditional image generation in [pipeline_latent_diffusion](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_latent_diffusion.py).
- Glide for text to image generation / conditional image generation in [pipeline_glide](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_glide.py).
- BDDM for spectrogram-to-sound vocoding in [pipeline_bddm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_bddm.py).
- BDDMPipeline for spectrogram-to-sound vocoding in [pipeline_bddm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_bddm.py).
- Grad-TTS for text to audio generation / conditional audio generation in [pipeline_grad_tts](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_grad_tts.py).

View File

@ -1,14 +1,14 @@
from ..utils import is_inflect_available, is_transformers_available, is_unidecode_available
from .pipeline_bddm import BDDM
from .pipeline_ddim import DDIM
from .pipeline_ddpm import DDPM
from .pipeline_pndm import PNDM
from .pipeline_bddm import BDDMPipeline
from .pipeline_ddim import DDIMPipeline
from .pipeline_ddpm import DDPMPipeline
from .pipeline_pndm import PNDMPipeline
if is_transformers_available():
from .pipeline_glide import Glide
from .pipeline_latent_diffusion import LatentDiffusion
from .pipeline_glide import GlidePipeline
from .pipeline_latent_diffusion import LatentDiffusionPipeline
if is_transformers_available() and is_unidecode_available() and is_inflect_available():
from .pipeline_grad_tts import GradTTS
from .pipeline_grad_tts import GradTTSPipeline

View File

@ -271,7 +271,7 @@ class DiffWave(ModelMixin, ConfigMixin):
return self.final_conv(x)
class BDDM(DiffusionPipeline):
class BDDMPipeline(DiffusionPipeline):
def __init__(self, diffwave, noise_scheduler):
super().__init__()
noise_scheduler = noise_scheduler.set_format("pt")

View File

@ -21,7 +21,7 @@ import tqdm
from ..pipeline_utils import DiffusionPipeline
class DDIM(DiffusionPipeline):
class DDIMPipeline(DiffusionPipeline):
def __init__(self, unet, noise_scheduler):
super().__init__()
noise_scheduler = noise_scheduler.set_format("pt")

View File

@ -21,7 +21,7 @@ import tqdm
from ..pipeline_utils import DiffusionPipeline
class DDPM(DiffusionPipeline):
class DDPMPipeline(DiffusionPipeline):
def __init__(self, unet, noise_scheduler):
super().__init__()
noise_scheduler = noise_scheduler.set_format("pt")

View File

@ -711,7 +711,7 @@ def _extract_into_tensor(arr, timesteps, broadcast_shape):
return res + torch.zeros(broadcast_shape, device=timesteps.device)
class Glide(DiffusionPipeline):
class GlidePipeline(DiffusionPipeline):
def __init__(
self,
text_unet: GlideTextToImageUNetModel,

View File

@ -420,7 +420,7 @@ class TextEncoder(ModelMixin, ConfigMixin):
return mu, logw, x_mask
class GradTTS(DiffusionPipeline):
class GradTTSPipeline(DiffusionPipeline):
def __init__(self, unet, text_encoder, noise_scheduler, tokenizer):
super().__init__()
noise_scheduler = noise_scheduler.set_format("pt")
@ -430,7 +430,14 @@ class GradTTS(DiffusionPipeline):
@torch.no_grad()
def __call__(
self, text, num_inference_steps=50, temperature=1.3, length_scale=0.91, speaker_id=15, torch_device=None
self,
text,
num_inference_steps=50,
temperature=1.3,
length_scale=0.91,
speaker_id=15,
torch_device=None,
generator=None,
):
if torch_device is None:
torch_device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
@ -464,7 +471,7 @@ class GradTTS(DiffusionPipeline):
mu_y = mu_y.transpose(1, 2)
# Sample latent representation from terminal distribution N(mu_y, I)
z = mu_y + torch.randn_like(mu_y, device=mu_y.device) / temperature
z = mu_y + torch.randn(mu_y.shape, device=mu_y.device, generator=generator) / temperature
xt = z * y_mask
h = 1.0 / num_inference_steps

View File

@ -860,7 +860,7 @@ class AutoencoderKL(ModelMixin, ConfigMixin):
return dec, posterior
class LatentDiffusion(DiffusionPipeline):
class LatentDiffusionPipeline(DiffusionPipeline):
def __init__(self, vqvae, bert, tokenizer, unet, noise_scheduler):
super().__init__()
noise_scheduler = noise_scheduler.set_format("pt")

View File

@ -21,7 +21,7 @@ import tqdm
from ..pipeline_utils import DiffusionPipeline
class PNDM(DiffusionPipeline):
class PNDMPipeline(DiffusionPipeline):
def __init__(self, unet, noise_scheduler):
super().__init__()
noise_scheduler = noise_scheduler.set_format("pt")

View File

@ -22,17 +22,17 @@ import numpy as np
import torch
from diffusers import (
BDDM,
DDIM,
DDPM,
Glide,
PNDM,
BDDMPipeline,
DDIMPipeline,
DDIMScheduler,
DDPMPipeline,
DDPMScheduler,
GlidePipeline,
GlideSuperResUNetModel,
GlideTextToImageUNetModel,
GradTTS,
LatentDiffusion,
GradTTSPipeline,
LatentDiffusionPipeline,
PNDMPipeline,
PNDMScheduler,
UNetGradTTSModel,
UNetLDMModel,
@ -583,11 +583,11 @@ class PipelineTesterMixin(unittest.TestCase):
model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
schedular = DDPMScheduler(timesteps=10)
ddpm = DDPM(model, schedular)
ddpm = DDPMPipeline(model, schedular)
with tempfile.TemporaryDirectory() as tmpdirname:
ddpm.save_pretrained(tmpdirname)
new_ddpm = DDPM.from_pretrained(tmpdirname)
new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
generator = torch.manual_seed(0)
@ -601,7 +601,7 @@ class PipelineTesterMixin(unittest.TestCase):
def test_from_pretrained_hub(self):
model_path = "fusing/ddpm-cifar10"
ddpm = DDPM.from_pretrained(model_path)
ddpm = DDPMPipeline.from_pretrained(model_path)
ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path)
ddpm.noise_scheduler.num_timesteps = 10
@ -624,7 +624,7 @@ class PipelineTesterMixin(unittest.TestCase):
noise_scheduler = DDPMScheduler.from_config(model_id)
noise_scheduler = noise_scheduler.set_format("pt")
ddpm = DDPM(unet=unet, noise_scheduler=noise_scheduler)
ddpm = DDPMPipeline(unet=unet, noise_scheduler=noise_scheduler)
image = ddpm(generator=generator)
image_slice = image[0, -1, -3:, -3:].cpu()
@ -641,7 +641,7 @@ class PipelineTesterMixin(unittest.TestCase):
unet = UNetModel.from_pretrained(model_id)
noise_scheduler = DDIMScheduler(tensor_format="pt")
ddim = DDIM(unet=unet, noise_scheduler=noise_scheduler)
ddim = DDIMPipeline(unet=unet, noise_scheduler=noise_scheduler)
image = ddim(generator=generator, eta=0.0)
image_slice = image[0, -1, -3:, -3:].cpu()
@ -660,7 +660,7 @@ class PipelineTesterMixin(unittest.TestCase):
unet = UNetModel.from_pretrained(model_id)
noise_scheduler = PNDMScheduler(tensor_format="pt")
pndm = PNDM(unet=unet, noise_scheduler=noise_scheduler)
pndm = PNDMPipeline(unet=unet, noise_scheduler=noise_scheduler)
image = pndm(generator=generator)
image_slice = image[0, -1, -3:, -3:].cpu()
@ -674,7 +674,7 @@ class PipelineTesterMixin(unittest.TestCase):
@slow
def test_ldm_text2img(self):
model_id = "fusing/latent-diffusion-text2im-large"
ldm = LatentDiffusion.from_pretrained(model_id)
ldm = LatentDiffusionPipeline.from_pretrained(model_id)
prompt = "A painting of a squirrel eating a burger"
generator = torch.manual_seed(0)
@ -689,7 +689,7 @@ class PipelineTesterMixin(unittest.TestCase):
@slow
def test_glide_text2img(self):
model_id = "fusing/glide-base"
glide = Glide.from_pretrained(model_id)
glide = GlidePipeline.from_pretrained(model_id)
prompt = "a pencil sketch of a corgi"
generator = torch.manual_seed(0)
@ -704,22 +704,25 @@ class PipelineTesterMixin(unittest.TestCase):
@slow
def test_grad_tts(self):
model_id = "fusing/grad-tts-libri-tts"
grad_tts = GradTTS.from_pretrained(model_id)
grad_tts = GradTTSPipeline.from_pretrained(model_id)
text = "Hello world, I missed you so much."
generator = torch.manual_seed(0)
# generate mel spectograms using text
mel_spec = grad_tts(text)
mel_spec = grad_tts(text, generator=generator)
assert mel_spec.shape == (1, 256, 256, 3)
expected_slice = torch.tensor([0.7119, 0.7073, 0.6460, 0.7780, 0.7423, 0.6926, 0.7378, 0.7189, 0.7784])
assert (mel_spec.flatten() - expected_slice).abs().max() < 1e-2
assert mel_spec.shape == (1, 80, 143)
expected_slice = torch.tensor(
[-6.6119, -6.5963, -6.2776, -6.7496, -6.7096, -6.5131, -6.4643, -6.4817, -6.7185]
)
assert (mel_spec[0, :3, :3].flatten() - expected_slice).abs().max() < 1e-2
def test_module_from_pipeline(self):
model = DiffWave(num_res_layers=4)
noise_scheduler = DDPMScheduler(timesteps=12)
bddm = BDDM(model, noise_scheduler)
bddm = BDDMPipeline(model, noise_scheduler)
# check if the library name for the diffwave moduel is set to pipeline module
self.assertTrue(bddm.config["diffwave"][0] == "pipeline_bddm")
@ -727,6 +730,6 @@ class PipelineTesterMixin(unittest.TestCase):
# check if we can save and load the pipeline
with tempfile.TemporaryDirectory() as tmpdirname:
bddm.save_pretrained(tmpdirname)
_ = BDDM.from_pretrained(tmpdirname)
_ = BDDMPipeline.from_pretrained(tmpdirname)
# check if the same works using the DifusionPipeline class
_ = DiffusionPipeline.from_pretrained(tmpdirname)