diff --git a/@ b/@ deleted file mode 100644 index 72548e44..00000000 --- a/@ +++ /dev/null @@ -1,1040 +0,0 @@ -import string -from abc import abstractmethod - -import numpy as np -import torch -import torch.nn as nn -import torch.nn.functional as F - - -def avg_pool_nd(dims, *args, **kwargs): - """ - Create a 1D, 2D, or 3D average pooling module. - """ - if dims == 1: - return nn.AvgPool1d(*args, **kwargs) - elif dims == 2: - return nn.AvgPool2d(*args, **kwargs) - elif dims == 3: - return nn.AvgPool3d(*args, **kwargs) - raise ValueError(f"unsupported dimensions: {dims}") - - -def conv_nd(dims, *args, **kwargs): - """ - Create a 1D, 2D, or 3D convolution module. - """ - if dims == 1: - return nn.Conv1d(*args, **kwargs) - elif dims == 2: - return nn.Conv2d(*args, **kwargs) - elif dims == 3: - return nn.Conv3d(*args, **kwargs) - raise ValueError(f"unsupported dimensions: {dims}") - - -def conv_transpose_nd(dims, *args, **kwargs): - """ - Create a 1D, 2D, or 3D convolution module. - """ - if dims == 1: - return nn.ConvTranspose1d(*args, **kwargs) - elif dims == 2: - return nn.ConvTranspose2d(*args, **kwargs) - elif dims == 3: - return nn.ConvTranspose3d(*args, **kwargs) - raise ValueError(f"unsupported dimensions: {dims}") - - -def Normalize(in_channels, num_groups=32, eps=1e-6): - return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=eps, affine=True) - - -def nonlinearity(x, swish=1.0): - # swish - if swish == 1.0: - return F.silu(x) - else: - return x * F.sigmoid(x * float(swish)) - - -class TimestepBlock(nn.Module): - """ - Any module where forward() takes timestep embeddings as a second argument. - """ - - @abstractmethod - def forward(self, x, emb): - """ - Apply the module to `x` given `emb` timestep embeddings. - """ - - -class Upsample(nn.Module): - """ - An upsampling layer with an optional convolution. - - :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is - applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then - upsampling occurs in the inner-two dimensions. - """ - - def __init__(self, channels, use_conv=False, use_conv_transpose=False, dims=2, out_channels=None): - super().__init__() - self.channels = channels - self.out_channels = out_channels or channels - self.use_conv = use_conv - self.dims = dims - self.use_conv_transpose = use_conv_transpose - - if use_conv_transpose: - self.conv = conv_transpose_nd(dims, channels, self.out_channels, 4, 2, 1) - elif use_conv: - self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1) - - def forward(self, x): - assert x.shape[1] == self.channels - if self.use_conv_transpose: - return self.conv(x) - - if self.dims == 3: - x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest") - else: - x = F.interpolate(x, scale_factor=2.0, mode="nearest") - - if self.use_conv: - x = self.conv(x) - - return x - - -class Downsample(nn.Module): - """ - A downsampling layer with an optional convolution. - - :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is - applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then - downsampling occurs in the inner-two dimensions. - """ - - def __init__(self, channels, use_conv=False, dims=2, out_channels=None, padding=1, name="conv"): - super().__init__() - self.channels = channels - self.out_channels = out_channels or channels - self.use_conv = use_conv - self.dims = dims - self.padding = padding - stride = 2 if dims != 3 else (1, 2, 2) - self.name = name - - if use_conv: - conv = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding) - else: - assert self.channels == self.out_channels - conv = avg_pool_nd(dims, kernel_size=stride, stride=stride) - - if name == "conv": - self.conv = conv - else: - self.op = conv - - def forward(self, x): - assert x.shape[1] == self.channels - if self.use_conv and self.padding == 0 and self.dims == 2: - pad = (0, 1, 0, 1) - x = F.pad(x, pad, mode="constant", value=0) - - if self.name == "conv": - return self.conv(x) - else: - return self.op(x) - - -# class UNetUpsample(nn.Module): -# def __init__(self, in_channels, with_conv): -# super().__init__() -# self.with_conv = with_conv -# if self.with_conv: -# self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) -# -# def forward(self, x): -# x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") -# if self.with_conv: -# x = self.conv(x) -# return x -# -# -# class GlideUpsample(nn.Module): -# """ -# An upsampling layer with an optional convolution. # # :param channels: channels in the inputs and outputs. :param -# use_conv: a bool determining if a convolution is # applied. :param dims: determines if the signal is 1D, 2D, or 3D. If -# 3D, then # upsampling occurs in the inner-two dimensions. #""" -# -# def __init__(self, channels, use_conv, dims=2, out_channels=None): -# super().__init__() -# self.channels = channels -# self.out_channels = out_channels or channels -# self.use_conv = use_conv -# self.dims = dims -# if use_conv: -# self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1) -# -# def forward(self, x): -# assert x.shape[1] == self.channels -# if self.dims == 3: -# x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest") -# else: -# x = F.interpolate(x, scale_factor=2, mode="nearest") -# if self.use_conv: -# x = self.conv(x) -# return x -# -# -# class LDMUpsample(nn.Module): -# """ -# An upsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param # -# use_conv: a bool determining if a convolution is applied. :param dims: determines if the signal is 1D, 2D, or 3D. # If -# 3D, then # upsampling occurs in the inner-two dimensions. #""" -# -# def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): -# super().__init__() -# self.channels = channels -# self.out_channels = out_channels or channels -# self.use_conv = use_conv -# self.dims = dims -# if use_conv: -# self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding) -# -# def forward(self, x): -# assert x.shape[1] == self.channels -# if self.dims == 3: -# x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest") -# else: -# x = F.interpolate(x, scale_factor=2, mode="nearest") -# if self.use_conv: -# x = self.conv(x) -# return x -# -# -# class GradTTSUpsample(torch.nn.Module): -# def __init__(self, dim): -# super(Upsample, self).__init__() -# self.conv = torch.nn.ConvTranspose2d(dim, dim, 4, 2, 1) -# -# def forward(self, x): -# return self.conv(x) -# -# -# TODO (patil-suraj): needs test -# class Upsample1d(nn.Module): -# def __init__(self, dim): -# super().__init__() -# self.conv = nn.ConvTranspose1d(dim, dim, 4, 2, 1) -# -# def forward(self, x): -# return self.conv(x) - - -# RESNETS - -# unet_glide.py & unet_ldm.py -class ResBlock(TimestepBlock): - """ - A residual block that can optionally change the number of channels. - - :param channels: the number of input channels. :param emb_channels: the number of timestep embedding channels. - :param dropout: the rate of dropout. :param out_channels: if specified, the number of out channels. :param - use_conv: if True and out_channels is specified, use a spatial - convolution instead of a smaller 1x1 convolution to change the channels in the skip connection. - :param dims: determines if the signal is 1D, 2D, or 3D. :param use_checkpoint: if True, use gradient checkpointing - on this module. :param up: if True, use this block for upsampling. :param down: if True, use this block for - downsampling. - """ - - def __init__( - self, - channels, - emb_channels, - dropout, - out_channels=None, - use_conv=False, - use_scale_shift_norm=False, - dims=2, - use_checkpoint=False, - up=False, - down=False, - ): - super().__init__() - self.channels = channels - self.emb_channels = emb_channels - self.dropout = dropout - self.out_channels = out_channels or channels - self.use_conv = use_conv - self.use_checkpoint = use_checkpoint - self.use_scale_shift_norm = use_scale_shift_norm - - self.in_layers = nn.Sequential( - normalization(channels, swish=1.0), - nn.Identity(), - conv_nd(dims, channels, self.out_channels, 3, padding=1), - ) - - self.updown = up or down - - if up: - self.h_upd = Upsample(channels, use_conv=False, dims=dims) - self.x_upd = Upsample(channels, use_conv=False, dims=dims) - elif down: - self.h_upd = Downsample(channels, use_conv=False, dims=dims, padding=1, name="op") - self.x_upd = Downsample(channels, use_conv=False, dims=dims, padding=1, name="op") - else: - self.h_upd = self.x_upd = nn.Identity() - - self.emb_layers = nn.Sequential( - nn.SiLU(), - linear( - emb_channels, - 2 * self.out_channels if use_scale_shift_norm else self.out_channels, - ), - ) - self.out_layers = nn.Sequential( - normalization(self.out_channels, swish=0.0 if use_scale_shift_norm else 1.0), - nn.SiLU() if use_scale_shift_norm else nn.Identity(), - nn.Dropout(p=dropout), - zero_module(conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)), - ) - - if self.out_channels == channels: - self.skip_connection = nn.Identity() - elif use_conv: - self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1) - else: - self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) - - def forward(self, x, emb): - """ - Apply the block to a Tensor, conditioned on a timestep embedding. - - :param x: an [N x C x ...] Tensor of features. :param emb: an [N x emb_channels] Tensor of timestep embeddings. - :return: an [N x C x ...] Tensor of outputs. - """ - if self.updown: - in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] - h = in_rest(x) - h = self.h_upd(h) - x = self.x_upd(x) - h = in_conv(h) - else: - h = self.in_layers(x) - emb_out = self.emb_layers(emb).type(h.dtype) - while len(emb_out.shape) < len(h.shape): - emb_out = emb_out[..., None] - if self.use_scale_shift_norm: - out_norm, out_rest = self.out_layers[0], self.out_layers[1:] - scale, shift = torch.chunk(emb_out, 2, dim=1) - h = out_norm(h) * (1 + scale) + shift - h = out_rest(h) - else: - h = h + emb_out - h = self.out_layers(h) - return self.skip_connection(x) + h - - -# unet.py -class OLD_ResnetBlock(nn.Module): - def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512): - super().__init__() - self.in_channels = in_channels - out_channels = in_channels if out_channels is None else out_channels - self.out_channels = out_channels - self.use_conv_shortcut = conv_shortcut - - self.norm1 = Normalize(in_channels) - self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) - self.temb_proj = torch.nn.Linear(temb_channels, out_channels) - self.norm2 = Normalize(out_channels) - self.dropout = torch.nn.Dropout(dropout) - self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) - if self.in_channels != self.out_channels: - if self.use_conv_shortcut: - self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) - else: - self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) - - def forward(self, x, temb): - h = x - h = self.norm1(h) - h = nonlinearity(h) - h = self.conv1(h) - - h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] - - h = self.norm2(h) - h = nonlinearity(h) - h = self.dropout(h) - h = self.conv2(h) - - if self.in_channels != self.out_channels: - if self.use_conv_shortcut: - x = self.conv_shortcut(x) - else: - x = self.nin_shortcut(x) - - return x + h - - -class ResnetBlock(nn.Module): - def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512, groups=32, pre_norm=True, eps=1e-6): - super().__init__() - self.in_channels = in_channels - out_channels = in_channels if out_channels is None else out_channels - self.out_channels = out_channels - self.use_conv_shortcut = conv_shortcut - self.pre_norm = pre_norm - - if self.pre_norm: - self.norm1 = Normalize(in_channels, num_groups=groups, eps=eps) - else: - self.norm1 = Normalize(out_channels, num_groups=groups, eps=eps) - - self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) - self.temb_proj = torch.nn.Linear(temb_channels, out_channels) - self.norm2 = Normalize(out_channels, num_groups=groups, eps=eps) - self.dropout = torch.nn.Dropout(dropout) - self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) - self.nonlinearity = nonlinearity - - if self.in_channels != self.out_channels: - if self.use_conv_shortcut: - self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) - else: - self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) - -# num_groups = 8 -# self.pre_norm = False -# eps = 1e-5 -# self.nonlinearity = Mish() - - def forward(self, x, temb, mask=None): - if mask is None: - mask = torch.ones_like(x) - - h = x - - h = h * mask - if self.pre_norm: - h = self.norm1(h) - h = self.nonlinearity(h) - - h = self.conv1(h) - - if not self.pre_norm: - h = self.norm1(h) - h = self.nonlinearity(h) - h = h * mask - - h = h + self.temb_proj(self.nonlinearity(temb))[:, :, None, None] - - if self.pre_norm: - h = self.norm2(h) - h = self.nonlinearity(h) - - h = h * mask - h = self.dropout(h) - h = self.conv2(h) - - if not self.pre_norm: - h = self.norm2(h) - h = self.nonlinearity(h) - h = h * mask - - x = x * mask - if self.in_channels != self.out_channels: - if self.use_conv_shortcut: - x = self.conv_shortcut(x) - else: - x = self.nin_shortcut(x) - - return x + h - - -# unet_grad_tts.py -class ResnetBlockGradTTS(torch.nn.Module): - def __init__(self, dim, dim_out, time_emb_dim, groups=8, eps=1e-6, overwrite=True, conv_shortcut=False, pre_norm=True): - super(ResnetBlockGradTTS, self).__init__() - self.mlp = torch.nn.Sequential(Mish(), torch.nn.Linear(time_emb_dim, dim_out)) - self.pre_norm = pre_norm - - self.block1 = Block(dim, dim_out, groups=groups) - self.block2 = Block(dim_out, dim_out, groups=groups) - if dim != dim_out: - self.res_conv = torch.nn.Conv2d(dim, dim_out, 1) - else: - self.res_conv = torch.nn.Identity() - - self.overwrite = overwrite - if self.overwrite: - in_channels = dim - out_channels = dim_out - temb_channels = time_emb_dim - - # To set via init - self.pre_norm = False - eps = 1e-5 - - self.in_channels = in_channels - out_channels = in_channels if out_channels is None else out_channels - self.out_channels = out_channels - self.use_conv_shortcut = conv_shortcut - - if self.pre_norm: - self.norm1 = Normalize(in_channels, num_groups=groups, eps=eps) - else: - self.norm1 = Normalize(out_channels, num_groups=groups, eps=eps) - - self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) - self.temb_proj = torch.nn.Linear(temb_channels, out_channels) - self.norm2 = Normalize(out_channels, num_groups=groups, eps=eps) - dropout = 0.0 - self.dropout = torch.nn.Dropout(dropout) - self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) - if self.in_channels != self.out_channels: - if self.use_conv_shortcut: - self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) - else: - self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) - - self.nonlinearity = Mish() - - self.is_overwritten = False - - def set_weights(self): - self.conv1.weight.data = self.block1.block[0].weight.data - self.conv1.bias.data = self.block1.block[0].bias.data - self.norm1.weight.data = self.block1.block[1].weight.data - self.norm1.bias.data = self.block1.block[1].bias.data - - self.conv2.weight.data = self.block2.block[0].weight.data - self.conv2.bias.data = self.block2.block[0].bias.data - self.norm2.weight.data = self.block2.block[1].weight.data - self.norm2.bias.data = self.block2.block[1].bias.data - - self.temb_proj.weight.data = self.mlp[1].weight.data - self.temb_proj.bias.data = self.mlp[1].bias.data - - if self.in_channels != self.out_channels: - self.nin_shortcut.weight.data = self.res_conv.weight.data - self.nin_shortcut.bias.data = self.res_conv.bias.data - - def forward(self, x, mask, time_emb): - h = self.block1(x, mask) - h += self.mlp(time_emb).unsqueeze(-1).unsqueeze(-1) - h = self.block2(h, mask) - output = h + self.res_conv(x * mask) - - output_2 = self.forward_2(x, time_emb, mask=mask) - return output - - def forward_2(self, x, temb, mask=None): - if not self.is_overwritten: - self.set_weights() - self.is_overwritten = True - - if mask is None: - mask = torch.ones_like(x) - - h = x - - h = h * mask - if self.pre_norm: - h = self.norm1(h) - h = self.nonlinearity(h) - - h = self.conv1(h) - - if not self.pre_norm: - h = self.norm1(h) - h = self.nonlinearity(h) - h = h * mask - - h = h + self.temb_proj(self.nonlinearity(temb))[:, :, None, None] - - h = h * mask - if self.pre_norm: - h = self.norm2(h) - h = self.nonlinearity(h) - - h = self.dropout(h) - h = self.conv2(h) - - if not self.pre_norm: - h = self.norm2(h) - h = self.nonlinearity(h) - h = h * mask - - x = x * mask - if self.in_channels != self.out_channels: - if self.use_conv_shortcut: - x = self.conv_shortcut(x) - else: - x = self.nin_shortcut(x) - - return x + h - - -class Block(torch.nn.Module): - def __init__(self, dim, dim_out, groups=8): - super(Block, self).__init__() - self.block = torch.nn.Sequential( - torch.nn.Conv2d(dim, dim_out, 3, padding=1), torch.nn.GroupNorm(groups, dim_out), Mish() - ) - - def forward(self, x, mask): - output = self.block(x * mask) - return output * mask - - -# unet_score_estimation.py -class ResnetBlockBigGANpp(nn.Module): - def __init__( - self, - act, - in_ch, - out_ch=None, - temb_dim=None, - up=False, - down=False, - dropout=0.1, - fir=False, - fir_kernel=(1, 3, 3, 1), - skip_rescale=True, - init_scale=0.0, - ): - super().__init__() - - out_ch = out_ch if out_ch else in_ch - self.GroupNorm_0 = nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6) - self.up = up - self.down = down - self.fir = fir - self.fir_kernel = fir_kernel - - self.Conv_0 = conv3x3(in_ch, out_ch) - if temb_dim is not None: - self.Dense_0 = nn.Linear(temb_dim, out_ch) - self.Dense_0.weight.data = default_init()(self.Dense_0.weight.shape) - nn.init.zeros_(self.Dense_0.bias) - - self.GroupNorm_1 = nn.GroupNorm(num_groups=min(out_ch // 4, 32), num_channels=out_ch, eps=1e-6) - self.Dropout_0 = nn.Dropout(dropout) - self.Conv_1 = conv3x3(out_ch, out_ch, init_scale=init_scale) - if in_ch != out_ch or up or down: - self.Conv_2 = conv1x1(in_ch, out_ch) - - self.skip_rescale = skip_rescale - self.act = act - self.in_ch = in_ch - self.out_ch = out_ch - - def forward(self, x, temb=None): - h = self.act(self.GroupNorm_0(x)) - - if self.up: - if self.fir: - h = upsample_2d(h, self.fir_kernel, factor=2) - x = upsample_2d(x, self.fir_kernel, factor=2) - else: - h = naive_upsample_2d(h, factor=2) - x = naive_upsample_2d(x, factor=2) - elif self.down: - if self.fir: - h = downsample_2d(h, self.fir_kernel, factor=2) - x = downsample_2d(x, self.fir_kernel, factor=2) - else: - h = naive_downsample_2d(h, factor=2) - x = naive_downsample_2d(x, factor=2) - - h = self.Conv_0(h) - # Add bias to each feature map conditioned on the time embedding - if temb is not None: - h += self.Dense_0(self.act(temb))[:, :, None, None] - h = self.act(self.GroupNorm_1(h)) - h = self.Dropout_0(h) - h = self.Conv_1(h) - - if self.in_ch != self.out_ch or self.up or self.down: - x = self.Conv_2(x) - - if not self.skip_rescale: - return x + h - else: - return (x + h) / np.sqrt(2.0) - - -# unet_score_estimation.py -class ResnetBlockDDPMpp(nn.Module): - """ResBlock adapted from DDPM.""" - - def __init__( - self, - act, - in_ch, - out_ch=None, - temb_dim=None, - conv_shortcut=False, - dropout=0.1, - skip_rescale=False, - init_scale=0.0, - ): - super().__init__() - out_ch = out_ch if out_ch else in_ch - self.GroupNorm_0 = nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6) - self.Conv_0 = conv3x3(in_ch, out_ch) - if temb_dim is not None: - self.Dense_0 = nn.Linear(temb_dim, out_ch) - self.Dense_0.weight.data = default_init()(self.Dense_0.weight.data.shape) - nn.init.zeros_(self.Dense_0.bias) - self.GroupNorm_1 = nn.GroupNorm(num_groups=min(out_ch // 4, 32), num_channels=out_ch, eps=1e-6) - self.Dropout_0 = nn.Dropout(dropout) - self.Conv_1 = conv3x3(out_ch, out_ch, init_scale=init_scale) - if in_ch != out_ch: - if conv_shortcut: - self.Conv_2 = conv3x3(in_ch, out_ch) - else: - self.NIN_0 = NIN(in_ch, out_ch) - - self.skip_rescale = skip_rescale - self.act = act - self.out_ch = out_ch - self.conv_shortcut = conv_shortcut - - def forward(self, x, temb=None): - h = self.act(self.GroupNorm_0(x)) - h = self.Conv_0(h) - if temb is not None: - h += self.Dense_0(self.act(temb))[:, :, None, None] - h = self.act(self.GroupNorm_1(h)) - h = self.Dropout_0(h) - h = self.Conv_1(h) - if x.shape[1] != self.out_ch: - if self.conv_shortcut: - x = self.Conv_2(x) - else: - x = self.NIN_0(x) - if not self.skip_rescale: - return x + h - else: - return (x + h) / np.sqrt(2.0) - - -# unet_rl.py -class ResidualTemporalBlock(nn.Module): - def __init__(self, inp_channels, out_channels, embed_dim, horizon, kernel_size=5): - super().__init__() - - self.blocks = nn.ModuleList( - [ - Conv1dBlock(inp_channels, out_channels, kernel_size), - Conv1dBlock(out_channels, out_channels, kernel_size), - ] - ) - - self.time_mlp = nn.Sequential( - nn.Mish(), - nn.Linear(embed_dim, out_channels), - RearrangeDim(), - # Rearrange("batch t -> batch t 1"), - ) - - self.residual_conv = ( - nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity() - ) - - def forward(self, x, t): - """ - x : [ batch_size x inp_channels x horizon ] t : [ batch_size x embed_dim ] returns: out : [ batch_size x - out_channels x horizon ] - """ - out = self.blocks[0](x) + self.time_mlp(t) - out = self.blocks[1](out) - return out + self.residual_conv(x) - - -# HELPER Modules - - -def normalization(channels, swish=0.0): - """ - Make a standard normalization layer, with an optional swish activation. - - :param channels: number of input channels. :return: an nn.Module for normalization. - """ - return GroupNorm32(num_channels=channels, num_groups=32, swish=swish) - - -class GroupNorm32(nn.GroupNorm): - def __init__(self, num_groups, num_channels, swish, eps=1e-5): - super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps) - self.swish = swish - - def forward(self, x): - y = super().forward(x.float()).to(x.dtype) - if self.swish == 1.0: - y = F.silu(y) - elif self.swish: - y = y * F.sigmoid(y * float(self.swish)) - return y - - -def linear(*args, **kwargs): - """ - Create a linear module. - """ - return nn.Linear(*args, **kwargs) - - -def zero_module(module): - """ - Zero out the parameters of a module and return it. - """ - for p in module.parameters(): - p.detach().zero_() - return module - - -class Mish(torch.nn.Module): - def forward(self, x): - return x * torch.tanh(torch.nn.functional.softplus(x)) - - -class Conv1dBlock(nn.Module): - """ - Conv1d --> GroupNorm --> Mish - """ - - def __init__(self, inp_channels, out_channels, kernel_size, n_groups=8): - super().__init__() - - self.block = nn.Sequential( - nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2), - RearrangeDim(), - # Rearrange("batch channels horizon -> batch channels 1 horizon"), - nn.GroupNorm(n_groups, out_channels), - RearrangeDim(), - # Rearrange("batch channels 1 horizon -> batch channels horizon"), - nn.Mish(), - ) - - def forward(self, x): - return self.block(x) - - -class RearrangeDim(nn.Module): - def __init__(self): - super().__init__() - - def forward(self, tensor): - if len(tensor.shape) == 2: - return tensor[:, :, None] - if len(tensor.shape) == 3: - return tensor[:, :, None, :] - elif len(tensor.shape) == 4: - return tensor[:, :, 0, :] - else: - raise ValueError(f"`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.") - - -def conv1x1(in_planes, out_planes, stride=1, bias=True, init_scale=1.0, padding=0): - """1x1 convolution with DDPM initialization.""" - conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, padding=padding, bias=bias) - conv.weight.data = default_init(init_scale)(conv.weight.data.shape) - nn.init.zeros_(conv.bias) - return conv - - -def conv3x3(in_planes, out_planes, stride=1, bias=True, dilation=1, init_scale=1.0, padding=1): - """3x3 convolution with DDPM initialization.""" - conv = nn.Conv2d( - in_planes, out_planes, kernel_size=3, stride=stride, padding=padding, dilation=dilation, bias=bias - ) - conv.weight.data = default_init(init_scale)(conv.weight.data.shape) - nn.init.zeros_(conv.bias) - return conv - - -def default_init(scale=1.0): - """The same initialization used in DDPM.""" - scale = 1e-10 if scale == 0 else scale - return variance_scaling(scale, "fan_avg", "uniform") - - -def variance_scaling(scale, mode, distribution, in_axis=1, out_axis=0, dtype=torch.float32, device="cpu"): - """Ported from JAX.""" - - def _compute_fans(shape, in_axis=1, out_axis=0): - receptive_field_size = np.prod(shape) / shape[in_axis] / shape[out_axis] - fan_in = shape[in_axis] * receptive_field_size - fan_out = shape[out_axis] * receptive_field_size - return fan_in, fan_out - - def init(shape, dtype=dtype, device=device): - fan_in, fan_out = _compute_fans(shape, in_axis, out_axis) - if mode == "fan_in": - denominator = fan_in - elif mode == "fan_out": - denominator = fan_out - elif mode == "fan_avg": - denominator = (fan_in + fan_out) / 2 - else: - raise ValueError("invalid mode for variance scaling initializer: {}".format(mode)) - variance = scale / denominator - if distribution == "normal": - return torch.randn(*shape, dtype=dtype, device=device) * np.sqrt(variance) - elif distribution == "uniform": - return (torch.rand(*shape, dtype=dtype, device=device) * 2.0 - 1.0) * np.sqrt(3 * variance) - else: - raise ValueError("invalid distribution for variance scaling initializer") - - return init - - -def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): - return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]) - - -def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1): - _, channel, in_h, in_w = input.shape - input = input.reshape(-1, in_h, in_w, 1) - - _, in_h, in_w, minor = input.shape - kernel_h, kernel_w = kernel.shape - - out = input.view(-1, in_h, 1, in_w, 1, minor) - out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1]) - out = out.view(-1, in_h * up_y, in_w * up_x, minor) - - out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) - out = out[ - :, - max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0), - max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0), - :, - ] - - out = out.permute(0, 3, 1, 2) - out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) - w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) - out = F.conv2d(out, w) - out = out.reshape( - -1, - minor, - in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, - in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, - ) - out = out.permute(0, 2, 3, 1) - out = out[:, ::down_y, ::down_x, :] - - out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 - out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 - - return out.view(-1, channel, out_h, out_w) - - -def upsample_2d(x, k=None, factor=2, gain=1): - r"""Upsample a batch of 2D images with the given filter. - - Args: - Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given - filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified - `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is a: - multiple of the upsampling factor. - x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, - C]`. - k: FIR filter of the shape `[firH, firW]` or `[firN]` - (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling. - factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). - - Returns: - Tensor of the shape `[N, C, H * factor, W * factor]` - """ - assert isinstance(factor, int) and factor >= 1 - if k is None: - k = [1] * factor - k = _setup_kernel(k) * (gain * (factor**2)) - p = k.shape[0] - factor - return upfirdn2d(x, torch.tensor(k, device=x.device), up=factor, pad=((p + 1) // 2 + factor - 1, p // 2)) - - -def downsample_2d(x, k=None, factor=2, gain=1): - r"""Downsample a batch of 2D images with the given filter. - - Args: - Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the - given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the - specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its - shape is a multiple of the downsampling factor. - x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, - C]`. - k: FIR filter of the shape `[firH, firW]` or `[firN]` - (separable). The default is `[1] * factor`, which corresponds to average pooling. - factor: Integer downsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). - - Returns: - Tensor of the shape `[N, C, H // factor, W // factor]` - """ - - assert isinstance(factor, int) and factor >= 1 - if k is None: - k = [1] * factor - k = _setup_kernel(k) * gain - p = k.shape[0] - factor - return upfirdn2d(x, torch.tensor(k, device=x.device), down=factor, pad=((p + 1) // 2, p // 2)) - - -def naive_upsample_2d(x, factor=2): - _N, C, H, W = x.shape - x = torch.reshape(x, (-1, C, H, 1, W, 1)) - x = x.repeat(1, 1, 1, factor, 1, factor) - return torch.reshape(x, (-1, C, H * factor, W * factor)) - - -def naive_downsample_2d(x, factor=2): - _N, C, H, W = x.shape - x = torch.reshape(x, (-1, C, H // factor, factor, W // factor, factor)) - return torch.mean(x, dim=(3, 5)) - - -class NIN(nn.Module): - def __init__(self, in_dim, num_units, init_scale=0.1): - super().__init__() - self.W = nn.Parameter(default_init(scale=init_scale)((in_dim, num_units)), requires_grad=True) - self.b = nn.Parameter(torch.zeros(num_units), requires_grad=True) - - def forward(self, x): - x = x.permute(0, 2, 3, 1) - y = contract_inner(x, self.W) + self.b - return y.permute(0, 3, 1, 2) - - -def _setup_kernel(k): - k = np.asarray(k, dtype=np.float32) - if k.ndim == 1: - k = np.outer(k, k) - k /= np.sum(k) - assert k.ndim == 2 - assert k.shape[0] == k.shape[1] - return k - - -def contract_inner(x, y): - """tensordot(x, y, 1).""" - x_chars = list(string.ascii_lowercase[: len(x.shape)]) - y_chars = list(string.ascii_lowercase[len(x.shape) : len(y.shape) + len(x.shape)]) - y_chars[0] = x_chars[-1] # first axis of y and last of x get summed - out_chars = x_chars[:-1] + y_chars[1:] - return _einsum(x_chars, y_chars, out_chars, x, y) - - -def _einsum(a, b, c, x, y): - einsum_str = "{},{}->{}".format("".join(a), "".join(b), "".join(c)) - return torch.einsum(einsum_str, x, y)