add tests for 1D Up/Downsample blocks (#72)

This commit is contained in:
Suraj Patil 2022-07-04 11:41:04 +02:00 committed by GitHub
parent 53a42d0a0c
commit 4e2674934f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 106 additions and 1 deletions

View File

@ -22,7 +22,7 @@ import numpy as np
import torch
from diffusers.models.embeddings import get_timestep_embedding
from diffusers.models.resnet import Downsample2D, Upsample2D
from diffusers.models.resnet import Downsample1D, Downsample2D, Upsample1D, Upsample2D
from diffusers.testing_utils import floats_tensor, slow, torch_device
@ -219,3 +219,108 @@ class Downsample2DBlockTests(unittest.TestCase):
output_slice = downsampled[0, -1, -3:, -3:]
expected_slice = torch.tensor([-0.6586, 0.5985, 0.0721, 0.1256, -0.1492, 0.4436, -0.2544, 0.5021, 1.1522])
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
class Upsample1DBlockTests(unittest.TestCase):
def test_upsample_default(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 32)
upsample = Upsample1D(channels=32, use_conv=False)
with torch.no_grad():
upsampled = upsample(sample)
assert upsampled.shape == (1, 32, 64)
output_slice = upsampled[0, -1, -8:]
expected_slice = torch.tensor([-1.6340, -1.6340, 0.5374, 0.5374, 1.0826, 1.0826, -1.7105, -1.7105])
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_upsample_with_conv(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 32)
upsample = Upsample1D(channels=32, use_conv=True)
with torch.no_grad():
upsampled = upsample(sample)
assert upsampled.shape == (1, 32, 64)
output_slice = upsampled[0, -1, -8:]
expected_slice = torch.tensor([-0.4546, -0.5010, -0.2996, 0.2844, 0.4040, -0.7772, -0.6862, 0.3612])
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_upsample_with_conv_out_dim(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 32)
upsample = Upsample1D(channels=32, use_conv=True, out_channels=64)
with torch.no_grad():
upsampled = upsample(sample)
assert upsampled.shape == (1, 64, 64)
output_slice = upsampled[0, -1, -8:]
expected_slice = torch.tensor([-0.0516, -0.0972, 0.9740, 1.1883, 0.4539, -0.5285, -0.5851, 0.1152])
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_upsample_with_transpose(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 32)
upsample = Upsample1D(channels=32, use_conv=False, use_conv_transpose=True)
with torch.no_grad():
upsampled = upsample(sample)
assert upsampled.shape == (1, 32, 64)
output_slice = upsampled[0, -1, -8:]
expected_slice = torch.tensor([-0.2238, -0.5842, -0.7165, 0.6699, 0.1033, -0.4269, -0.8974, -0.3716])
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
class Downsample1DBlockTests(unittest.TestCase):
def test_downsample_default(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 64)
downsample = Downsample1D(channels=32, use_conv=False)
with torch.no_grad():
downsampled = downsample(sample)
assert downsampled.shape == (1, 32, 32)
output_slice = downsampled[0, -1, -8:]
expected_slice = torch.tensor([-0.8796, 1.0945, -0.3434, 0.2910, 0.3391, -0.4488, -0.9568, -0.2909])
max_diff = (output_slice.flatten() - expected_slice).abs().sum().item()
assert max_diff <= 1e-3
# assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-1)
def test_downsample_with_conv(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 64)
downsample = Downsample1D(channels=32, use_conv=True)
with torch.no_grad():
downsampled = downsample(sample)
assert downsampled.shape == (1, 32, 32)
output_slice = downsampled[0, -1, -8:]
expected_slice = torch.tensor(
[0.1723, 0.0811, -0.6205, -0.3045, 0.0666, -0.2381, -0.0238, 0.2834],
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_downsample_with_conv_pad1(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 64)
downsample = Downsample1D(channels=32, use_conv=True, padding=1)
with torch.no_grad():
downsampled = downsample(sample)
assert downsampled.shape == (1, 32, 32)
output_slice = downsampled[0, -1, -8:]
expected_slice = torch.tensor([0.1723, 0.0811, -0.6205, -0.3045, 0.0666, -0.2381, -0.0238, 0.2834])
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_downsample_with_conv_out_dim(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 64)
downsample = Downsample1D(channels=32, use_conv=True, out_channels=16)
with torch.no_grad():
downsampled = downsample(sample)
assert downsampled.shape == (1, 16, 32)
output_slice = downsampled[0, -1, -8:]
expected_slice = torch.tensor([1.1067, -0.5255, -0.4451, 0.0487, -0.3664, -0.7945, -0.4495, -0.3129])
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)