StableDiffusionDepth2ImgPipeline (#1531)

* begin depth pipeline

* add depth estimation model

* fix prepare_depth_mask

* add a comment about autocast

* copied from, quality, cleanup

* begin tests

* handle tensors

* norm image tensor

* fix batch size

* fix tests

* fix enable_sequential_cpu_offload

* fix save load

* fix test_save_load_float16

* fix test_save_load_optional_components

* fix test_float16_inference

* fix test_cpu_offload_forward_pass

* fix test_dict_tuple_outputs_equivalent

* up

* fix fast tests

* fix test_stable_diffusion_img2img_multiple_init_images

* fix few more fast tests

* don't use device map for DPT

* fix test_stable_diffusion_pipeline_with_sequential_cpu_offloading

* accept external depth maps

* prepare_depth_mask -> prepare_depth_map

* fix file name

* fix file name

* quality

* check transformers version

* fix test names

* use skipif

* fix import

* add docs

* skip tests on mps

* correct version

* uP

* Update docs/source/api/pipelines/stable_diffusion_2.mdx

* fix fix-copies

* fix fix-copies

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: anton- <anton@huggingface.co>
This commit is contained in:
Suraj Patil 2022-12-08 18:25:12 +01:00 committed by GitHub
parent dbe0719246
commit 5383188c7e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 1234 additions and 23 deletions

View File

@ -97,6 +97,14 @@ If you want to use all possible use cases in a single `DiffusionPipeline` you ca
- enable_xformers_memory_efficient_attention - enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention - disable_xformers_memory_efficient_attention
## StableDiffusionDepth2ImgPipeline
[[autodoc]] StableDiffusionDepth2ImgPipeline
- __call__
- enable_attention_slicing
- disable_attention_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention
## StableDiffusionImageVariationPipeline ## StableDiffusionImageVariationPipeline
[[autodoc]] StableDiffusionImageVariationPipeline [[autodoc]] StableDiffusionImageVariationPipeline
- __call__ - __call__

View File

@ -30,6 +30,7 @@ Note that the architecture is more or less identical to [Stable Diffusion 1](./a
- *Text-to-Image (768x768 resolution)*: [stabilityai/stable-diffusion-2](https://huggingface.co/stabilityai/stable-diffusion-2) with [`StableDiffusionPipeline`] - *Text-to-Image (768x768 resolution)*: [stabilityai/stable-diffusion-2](https://huggingface.co/stabilityai/stable-diffusion-2) with [`StableDiffusionPipeline`]
- *Image Inpainting (512x512 resolution)*: [stabilityai/stable-diffusion-2-inpainting](https://huggingface.co/stabilityai/stable-diffusion-2-inpainting) with [`StableDiffusionInpaintPipeline`] - *Image Inpainting (512x512 resolution)*: [stabilityai/stable-diffusion-2-inpainting](https://huggingface.co/stabilityai/stable-diffusion-2-inpainting) with [`StableDiffusionInpaintPipeline`]
- *Image Upscaling (x4 resolution resolution)*: [stable-diffusion-x4-upscaler](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler) [`StableDiffusionUpscalePipeline`] - *Image Upscaling (x4 resolution resolution)*: [stable-diffusion-x4-upscaler](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler) [`StableDiffusionUpscalePipeline`]
- *Depth-to-Image (512x512 resolution)*: [stabilityai/stable-diffusion-2-depth](https://huggingface.co/stabilityai/stable-diffusion-2-depth) with [`StableDiffusionDepth2ImagePipeline`]
We recommend using the [`DPMSolverMultistepScheduler`] as it's currently the fastest scheduler there is. We recommend using the [`DPMSolverMultistepScheduler`] as it's currently the fastest scheduler there is.
@ -125,6 +126,37 @@ upscaled_image = pipeline(prompt=prompt, image=low_res_img).images[0]
upscaled_image.save("upsampled_cat.png") upscaled_image.save("upsampled_cat.png")
``` ```
- *Depth-Guided Text-to-Image*: [stabilityai/stable-diffusion-2-depth](https://huggingface.co/stabilityai/stable-diffusion-2-depth) [`StableDiffusionDepth2ImagePipeline`]
**Installation**
```bash
!pip install -U git+https://github.com/huggingface/transformers.git
!pip install diffusers[torch]
```
**Example**
```python
import torch
import requests
from PIL import Image
from diffusers import StableDiffusionDepth2ImgPipeline
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-depth",
torch_dtype=torch.float16,
).to("cuda")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
init_image = Image.open(requests.get(url, stream=True).raw)
prompt = "two tigers"
n_propmt = "bad, deformed, ugly, bad anotomy"
image = pipe(prompt=prompt, image=init_image, negative_prompt=n_propmt, strength=0.7).images[0]
```
### How to load and use different schedulers. ### How to load and use different schedulers.
The stable diffusion pipeline uses [`DDIMScheduler`] scheduler by default. But `diffusers` provides many other schedulers that can be used with the stable diffusion pipeline such as [`PNDMScheduler`], [`LMSDiscreteScheduler`], [`EulerDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`] etc. The stable diffusion pipeline uses [`DDIMScheduler`] scheduler by default. But `diffusers` provides many other schedulers that can be used with the stable diffusion pipeline such as [`PNDMScheduler`], [`LMSDiscreteScheduler`], [`EulerDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`] etc.

View File

@ -107,7 +107,7 @@ _deps = [
"tensorboard", "tensorboard",
"torch>=1.4", "torch>=1.4",
"torchvision", "torchvision",
"transformers>=4.21.0", "transformers>=4.25.1",
] ]
# this is a lookup table with items like: # this is a lookup table with items like:

View File

@ -12,11 +12,24 @@ from .utils import (
is_scipy_available, is_scipy_available,
is_torch_available, is_torch_available,
is_transformers_available, is_transformers_available,
is_transformers_version,
is_unidecode_available, is_unidecode_available,
logging, logging,
) )
# Make sure `transformers` is up to date
if is_transformers_available():
import transformers
if is_transformers_version("<", "4.25.1"):
raise ImportError(
f"`diffusers` requires transformers >= 4.25.1 to function correctly, but {transformers.__version__} was"
" found in your environment. You can upgrade it with pip: `pip install transformers --upgrade`"
)
else:
pass
try: try:
if not is_torch_available(): if not is_torch_available():
raise OptionalDependencyNotAvailable() raise OptionalDependencyNotAvailable()
@ -87,6 +100,7 @@ else:
CycleDiffusionPipeline, CycleDiffusionPipeline,
LDMTextToImagePipeline, LDMTextToImagePipeline,
PaintByExamplePipeline, PaintByExamplePipeline,
StableDiffusionDepth2ImgPipeline,
StableDiffusionImageVariationPipeline, StableDiffusionImageVariationPipeline,
StableDiffusionImg2ImgPipeline, StableDiffusionImg2ImgPipeline,
StableDiffusionInpaintPipeline, StableDiffusionInpaintPipeline,

View File

@ -31,5 +31,5 @@ deps = {
"tensorboard": "tensorboard", "tensorboard": "tensorboard",
"torch": "torch>=1.4", "torch": "torch>=1.4",
"torchvision": "torchvision", "torchvision": "torchvision",
"transformers": "transformers>=4.21.0", "transformers": "transformers>=4.25.1",
} }

View File

@ -44,6 +44,7 @@ else:
from .paint_by_example import PaintByExamplePipeline from .paint_by_example import PaintByExamplePipeline
from .stable_diffusion import ( from .stable_diffusion import (
CycleDiffusionPipeline, CycleDiffusionPipeline,
StableDiffusionDepth2ImgPipeline,
StableDiffusionImageVariationPipeline, StableDiffusionImageVariationPipeline,
StableDiffusionImg2ImgPipeline, StableDiffusionImg2ImgPipeline,
StableDiffusionInpaintPipeline, StableDiffusionInpaintPipeline,

View File

@ -46,13 +46,23 @@ if is_transformers_available() and is_torch_available():
from .safety_checker import StableDiffusionSafetyChecker from .safety_checker import StableDiffusionSafetyChecker
try: try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0.dev0")): if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable() raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable: except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline
else: else:
from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.26.0.dev0")):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import StableDiffusionDepth2ImgPipeline
else:
from .pipeline_stable_diffusion_depth2img import StableDiffusionDepth2ImgPipeline
try: try:
if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()):
raise OptionalDependencyNotAvailable() raise OptionalDependencyNotAvailable()

View File

@ -0,0 +1,564 @@
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import inspect
from typing import Callable, List, Optional, Union
import numpy as np
import torch
import PIL
from diffusers.utils import is_accelerate_available
from packaging import version
from transformers import CLIPTextModel, CLIPTokenizer, DPTFeatureExtractor, DPTForDepthEstimation
from ...configuration_utils import FrozenDict
from ...models import AutoencoderKL, UNet2DConditionModel
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, deprecate, logging
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def preprocess(image):
w, h = image.size
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"])
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return 2.0 * image - 1.0
class StableDiffusionDepth2ImgPipeline(DiffusionPipeline):
r"""
Pipeline for text-guided image to image generation using Stable Diffusion.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
"""
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
],
depth_estimator: DPTForDepthEstimation,
feature_extractor: DPTFeatureExtractor,
):
super().__init__()
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
version.parse(unet.config._diffusers_version).base_version
) < version.parse("0.9.0.dev0")
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
deprecation_message = (
"The configuration file of the unet has set the default `sample_size` to smaller than"
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
" in the config might lead to incorrect results in future versions. If you have downloaded this"
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
" the `unet/config.json` file"
)
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(unet.config)
new_config["sample_size"] = 64
unet._internal_dict = FrozenDict(new_config)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
depth_estimator=depth_estimator,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
def enable_sequential_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`")
device = torch.device(f"cuda:{gpu_id}")
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.depth_estimator]:
if cpu_offloaded_model is not None:
cpu_offload(cpu_offloaded_model, device)
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def _execution_device(self):
r"""
Returns the device on which the pipeline's models will be executed. After calling
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
hooks.
"""
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `list(int)`):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
"""
batch_size = len(prompt) if isinstance(prompt, list) else 1
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="pt").input_ids
if not torch.equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
text_embeddings = self.text_encoder(
text_input_ids.to(device),
attention_mask=attention_mask,
)
text_embeddings = text_embeddings[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
bs_embed, seq_len, _ = text_embeddings.shape
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = text_input_ids.shape[-1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
uncond_embeddings = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
uncond_embeddings = uncond_embeddings[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = uncond_embeddings.shape[1]
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
def run_safety_checker(self, image, device, dtype):
if self.safety_checker is not None:
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
)
else:
has_nsfw_concept = None
return image, has_nsfw_concept
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
def decode_latents(self, latents):
latents = 1 / 0.18215 * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(self, prompt, strength, callback_steps):
if not isinstance(prompt, str) and not isinstance(prompt, list):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if strength < 0 or strength > 1:
raise ValueError(f"The value of strength should in [1.0, 1.0] but is {strength}")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
offset = self.scheduler.config.get("steps_offset", 0)
init_timestep = int(num_inference_steps * strength) + offset
init_timestep = min(init_timestep, num_inference_steps)
t_start = max(num_inference_steps - init_timestep + offset, 0)
timesteps = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.prepare_latents
def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None):
image = image.to(device=device, dtype=dtype)
init_latent_dist = self.vae.encode(image).latent_dist
init_latents = init_latent_dist.sample(generator=generator)
init_latents = 0.18215 * init_latents
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
# expand init_latents for batch_size
deprecation_message = (
f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
" your script to pass as many initial images as text prompts to suppress this warning."
)
deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
additional_image_per_prompt = batch_size // init_latents.shape[0]
init_latents = torch.cat([init_latents] * additional_image_per_prompt * num_images_per_prompt, dim=0)
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
raise ValueError(
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
)
else:
init_latents = torch.cat([init_latents] * num_images_per_prompt, dim=0)
# add noise to latents using the timesteps
noise = torch.randn(init_latents.shape, generator=generator, device=device, dtype=dtype)
# get latents
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
latents = init_latents
return latents
def prepare_depth_map(self, image, depth_map, batch_size, do_classifier_free_guidance, dtype, device):
if isinstance(image, PIL.Image.Image):
width, height = image.size
width, height = map(lambda dim: dim - dim % 32, (width, height)) # resize to integer multiple of 32
image = image.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])
width, height = image.size
else:
image = [img for img in image]
width, height = image[0].shape[-2:]
if depth_map is None:
pixel_values = self.feature_extractor(images=image, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device=device)
# The DPT-Hybrid model uses batch-norm layers which are not compatible with fp16.
# So we use `torch.autocast` here for half precision inference.
context_manger = torch.autocast("cuda", dtype=dtype) if device.type == "cuda" else contextlib.nullcontext()
with context_manger:
depth_map = self.depth_estimator(pixel_values).predicted_depth
else:
depth_map = depth_map.to(device=device, dtype=dtype)
depth_map = torch.nn.functional.interpolate(
depth_map.unsqueeze(1),
size=(height // self.vae_scale_factor, width // self.vae_scale_factor),
mode="bicubic",
align_corners=False,
)
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
depth_map = 2.0 * (depth_map - depth_min) / (depth_max - depth_min) - 1.0
depth_map = depth_map.to(dtype)
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
if depth_map.shape[0] < batch_size:
depth_map = depth_map.repeat(batch_size, 1, 1, 1)
depth_map = torch.cat([depth_map] * 2) if do_classifier_free_guidance else depth_map
return depth_map
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
image: Union[torch.FloatTensor, PIL.Image.Image],
depth_map: Optional[torch.FloatTensor] = None,
strength: float = 0.8,
num_inference_steps: Optional[int] = 50,
guidance_scale: Optional[float] = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: Optional[float] = 0.0,
generator: Optional[torch.Generator] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
**kwargs,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
image (`torch.FloatTensor` or `PIL.Image.Image`):
`Image`, or tensor representing an image batch, that will be used as the starting point for the
process.
strength (`float`, *optional*, defaults to 0.8):
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image`
will be used as a starting point, adding more noise to it the larger the `strength`. The number of
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
be maximum and the denoising process will run for the full number of iterations specified in
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference. This parameter will be modulated by `strength`.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
# 1. Check inputs
self.check_inputs(prompt, strength, callback_steps)
# 2. Define call parameters
batch_size = 1 if isinstance(prompt, str) else len(prompt)
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
text_embeddings = self._encode_prompt(
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
)
# 4. Prepare depth mask
depth_mask = self.prepare_depth_map(
image,
depth_map,
batch_size * num_images_per_prompt,
do_classifier_free_guidance,
text_embeddings.dtype,
device,
)
# 5. Preprocess image
if isinstance(image, PIL.Image.Image):
image = preprocess(image)
else:
image = 2.0 * (image / 255.0) - 1.0
# 6. set timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
# 7. Prepare latent variables
latents = self.prepare_latents(
image, latent_timestep, batch_size, num_images_per_prompt, text_embeddings.dtype, device, generator
)
# 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 9. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
latent_model_input = torch.cat([latent_model_input, depth_mask], dim=1)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# 10. Post-processing
image = self.decode_latents(latents)
# 11. Convert to PIL
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)

View File

@ -7,7 +7,7 @@ from ...utils import (
try: try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0.dev0")): if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable() raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable: except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import ( from ...utils.dummy_torch_and_transformers_objects import (

View File

@ -79,6 +79,21 @@ class PaintByExamplePipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"]) requires_backends(cls, ["torch", "transformers"])
class StableDiffusionDepth2ImgPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class StableDiffusionImageVariationPipeline(metaclass=DummyObject): class StableDiffusionImageVariationPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"] _backends = ["torch", "transformers"]

View File

@ -310,12 +310,6 @@ LIBROSA_IMPORT_ERROR = """
installation page: https://librosa.org/doc/latest/install.html and follow the ones that match your environment. installation page: https://librosa.org/doc/latest/install.html and follow the ones that match your environment.
""" """
# docstyle-ignore
TENSORFLOW_IMPORT_ERROR = """
{0} requires the TensorFlow library but it was not found in your environment. Checkout the instructions on the
installation page: https://www.tensorflow.org/install and follow the ones that match your environment.
"""
# docstyle-ignore # docstyle-ignore
TRANSFORMERS_IMPORT_ERROR = """ TRANSFORMERS_IMPORT_ERROR = """
{0} requires the transformers library but it was not found in your environment. You can install it with pip: `pip {0} requires the transformers library but it was not found in your environment. You can install it with pip: `pip
@ -341,7 +335,6 @@ BACKENDS_MAPPING = OrderedDict(
("inflect", (is_inflect_available, INFLECT_IMPORT_ERROR)), ("inflect", (is_inflect_available, INFLECT_IMPORT_ERROR)),
("onnx", (is_onnx_available, ONNX_IMPORT_ERROR)), ("onnx", (is_onnx_available, ONNX_IMPORT_ERROR)),
("scipy", (is_scipy_available, SCIPY_IMPORT_ERROR)), ("scipy", (is_scipy_available, SCIPY_IMPORT_ERROR)),
("tf", (is_tf_available, TENSORFLOW_IMPORT_ERROR)),
("torch", (is_torch_available, PYTORCH_IMPORT_ERROR)), ("torch", (is_torch_available, PYTORCH_IMPORT_ERROR)),
("transformers", (is_transformers_available, TRANSFORMERS_IMPORT_ERROR)), ("transformers", (is_transformers_available, TRANSFORMERS_IMPORT_ERROR)),
("unidecode", (is_unidecode_available, UNIDECODE_IMPORT_ERROR)), ("unidecode", (is_unidecode_available, UNIDECODE_IMPORT_ERROR)),
@ -361,12 +354,7 @@ def requires_backends(obj, backends):
if failed: if failed:
raise ImportError("".join(failed)) raise ImportError("".join(failed))
if name in [ if name in ["StableDiffusionDepth2ImgPipeline"] and is_transformers_version("<", "4.26.0.dev0"):
"VersatileDiffusionTextToImagePipeline",
"VersatileDiffusionPipeline",
"VersatileDiffusionDualGuidedPipeline",
"StableDiffusionImageVariationPipeline",
] and is_transformers_version("<", "4.25.0.dev0"):
raise ImportError( raise ImportError(
f"You need to install `transformers` from 'main' in order to use {name}: \n```\n pip install" f"You need to install `transformers` from 'main' in order to use {name}: \n```\n pip install"
" git+https://github.com/huggingface/transformers \n```" " git+https://github.com/huggingface/transformers \n```"

View File

@ -0,0 +1,573 @@
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from diffusers import (
AutoencoderKL,
DDIMScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionDepth2ImgPipeline,
UNet2DConditionModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.import_utils import is_accelerate_available
from diffusers.utils.testing_utils import require_torch_gpu
from PIL import Image
from transformers import (
CLIPTextConfig,
CLIPTextModel,
CLIPTokenizer,
DPTConfig,
DPTFeatureExtractor,
DPTForDepthEstimation,
)
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
@unittest.skipIf(torch_device == "mps", reason="The depth model does not support MPS yet")
class StableDiffusiondepth2imgPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = StableDiffusionDepth2ImgPipeline
test_save_load_optional_components = False
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=5,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
attention_head_dim=(2, 4, 8, 8),
use_linear_projection=True,
)
scheduler = PNDMScheduler(skip_prk_steps=True)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
backbone_config = {
"global_padding": "same",
"layer_type": "bottleneck",
"depths": [3, 4, 9],
"out_features": ["stage1", "stage2", "stage3"],
"embedding_dynamic_padding": True,
"hidden_sizes": [96, 192, 384, 768],
"num_groups": 2,
}
depth_estimator_config = DPTConfig(
image_size=32,
patch_size=16,
num_channels=3,
hidden_size=32,
num_hidden_layers=4,
backbone_out_indices=(0, 1, 2, 3),
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
is_decoder=False,
initializer_range=0.02,
is_hybrid=True,
backbone_config=backbone_config,
backbone_featmap_shape=[1, 384, 24, 24],
)
depth_estimator = DPTForDepthEstimation(depth_estimator_config)
feature_extractor = DPTFeatureExtractor.from_pretrained(
"hf-internal-testing/tiny-random-DPTForDepthEstimation"
)
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"depth_estimator": depth_estimator,
"feature_extractor": feature_extractor,
}
return components
def get_dummy_inputs(self, device, seed=0):
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
@unittest.skipIf(torch_device == "mps", reason="The depth model does not support MPS yet")
def test_save_load_local(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(output - output_loaded).max()
self.assertLess(max_diff, 3e-5)
@unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
def test_save_load_float16(self):
components = self.get_dummy_components()
for name, module in components.items():
if hasattr(module, "half"):
components[name] = module.to(torch_device).half()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, torch_dtype=torch.float16)
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
for name, component in pipe_loaded.components.items():
if hasattr(component, "dtype"):
self.assertTrue(
component.dtype == torch.float16,
f"`{name}.dtype` switched from `float16` to {component.dtype} after loading.",
)
inputs = self.get_dummy_inputs(torch_device)
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(output - output_loaded).max()
self.assertLess(max_diff, 2e-2, "The output of the fp16 pipeline changed after saving and loading.")
@unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
def test_float16_inference(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
for name, module in components.items():
if hasattr(module, "half"):
components[name] = module.half()
pipe_fp16 = self.pipeline_class(**components)
pipe_fp16.to(torch_device)
pipe_fp16.set_progress_bar_config(disable=None)
output = pipe(**self.get_dummy_inputs(torch_device))[0]
output_fp16 = pipe_fp16(**self.get_dummy_inputs(torch_device))[0]
max_diff = np.abs(output - output_fp16).max()
self.assertLess(max_diff, 1.3e-2, "The outputs of the fp16 and fp32 pipelines are too different.")
@unittest.skipIf(
torch_device != "cuda" or not is_accelerate_available(),
reason="CPU offload is only available with CUDA and `accelerate` installed",
)
def test_cpu_offload_forward_pass(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output_without_offload = pipe(**inputs)[0]
pipe.enable_sequential_cpu_offload()
inputs = self.get_dummy_inputs(torch_device)
output_with_offload = pipe(**inputs)[0]
max_diff = np.abs(output_with_offload - output_without_offload).max()
self.assertLess(max_diff, 3e-5, "CPU offloading should not affect the inference results")
@unittest.skipIf(torch_device == "mps", reason="The depth model does not support MPS yet")
def test_dict_tuple_outputs_equivalent(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
# Warmup pass when using mps (see #372)
if torch_device == "mps":
_ = pipe(**self.get_dummy_inputs(torch_device))
output = pipe(**self.get_dummy_inputs(torch_device))[0]
output_tuple = pipe(**self.get_dummy_inputs(torch_device), return_dict=False)[0]
max_diff = np.abs(output - output_tuple).max()
self.assertLess(max_diff, 3e-5)
@unittest.skipIf(torch_device == "mps", reason="The depth model does not support MPS yet")
def test_num_inference_steps_consistent(self):
super().test_num_inference_steps_consistent()
@unittest.skipIf(torch_device == "mps", reason="The depth model does not support MPS yet")
def test_progress_bar(self):
super().test_progress_bar()
def test_stable_diffusion_depth2img_default_case(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionDepth2ImgPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
if torch_device == "mps":
expected_slice = np.array([0.6071, 0.5035, 0.4378, 0.5776, 0.5753, 0.4316, 0.4513, 0.5263, 0.4546])
else:
expected_slice = np.array([0.6907, 0.5135, 0.4688, 0.5169, 0.5738, 0.4600, 0.4435, 0.5640, 0.4653])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_depth2img_negative_prompt(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionDepth2ImgPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
negative_prompt = "french fries"
output = sd_pipe(**inputs, negative_prompt=negative_prompt)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
if torch_device == "mps":
expected_slice = np.array([0.5825, 0.5135, 0.4095, 0.5452, 0.6059, 0.4211, 0.3994, 0.5177, 0.4335])
else:
expected_slice = np.array([0.755, 0.521, 0.473, 0.554, 0.629, 0.442, 0.440, 0.582, 0.449])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_depth2img_multiple_init_images(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionDepth2ImgPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["prompt"] = [inputs["prompt"]] * 2
inputs["image"] = inputs["image"].repeat(2, 1, 1, 1)
image = sd_pipe(**inputs).images
image_slice = image[-1, -3:, -3:, -1]
assert image.shape == (2, 32, 32, 3)
if torch_device == "mps":
expected_slice = np.array([0.6501, 0.5150, 0.4939, 0.6688, 0.5437, 0.5758, 0.5115, 0.4406, 0.4551])
else:
expected_slice = np.array([0.6475, 0.6302, 0.5627, 0.5222, 0.4318, 0.5489, 0.5079, 0.4419, 0.4494])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_depth2img_num_images_per_prompt(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionDepth2ImgPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
# test num_images_per_prompt=1 (default)
inputs = self.get_dummy_inputs(device)
images = sd_pipe(**inputs).images
assert images.shape == (1, 32, 32, 3)
# test num_images_per_prompt=1 (default) for batch of prompts
batch_size = 2
inputs = self.get_dummy_inputs(device)
inputs["prompt"] = [inputs["prompt"]] * batch_size
images = sd_pipe(**inputs).images
assert images.shape == (batch_size, 32, 32, 3)
# test num_images_per_prompt for single prompt
num_images_per_prompt = 2
inputs = self.get_dummy_inputs(device)
images = sd_pipe(**inputs, num_images_per_prompt=num_images_per_prompt).images
assert images.shape == (num_images_per_prompt, 32, 32, 3)
# test num_images_per_prompt for batch of prompts
batch_size = 2
inputs = self.get_dummy_inputs(device)
inputs["prompt"] = [inputs["prompt"]] * batch_size
images = sd_pipe(**inputs, num_images_per_prompt=num_images_per_prompt).images
assert images.shape == (batch_size * num_images_per_prompt, 32, 32, 3)
def test_stable_diffusion_depth2img_pil(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionDepth2ImgPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["image"] = Image.fromarray(inputs["image"][0].permute(1, 2, 0).numpy().astype(np.uint8))
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
if torch_device == "mps":
expected_slice = np.array([0.53232, 0.47015, 0.40868, 0.45651, 0.4891, 0.4668, 0.4287, 0.48822, 0.47439])
else:
expected_slice = np.array([0.6853, 0.3740, 0.4856, 0.7130, 0.7402, 0.5535, 0.4828, 0.6182, 0.5053])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
@slow
@require_torch_gpu
class StableDiffusionDepth2ImgPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_stable_diffusion_depth2img_pipeline_default(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/depth2img/two_cats.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/depth2img/two_cats.npy"
)
model_id = "stabilityai/stable-diffusion-2-depth"
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(model_id)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "two tigers"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe(
prompt=prompt,
image=init_image,
strength=0.75,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (480, 640, 3)
# depth2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image).max() < 1e-3
def test_stable_diffusion_depth2img_pipeline_k_lms(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/depth2img/two_cats.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/depth2img/two_cats_k_lms.npy"
)
model_id = "stabilityai/stable-diffusion-2-depth"
lms = LMSDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(model_id, scheduler=lms)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "two tigers"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe(
prompt=prompt,
image=init_image,
strength=0.75,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (480, 640, 3)
assert np.abs(expected_image - image).max() < 1e-3
def test_stable_diffusion_depth2img_pipeline_ddim(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/depth2img/two_cats.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/depth2img/two_cats_ddim.npy"
)
model_id = "stabilityai/stable-diffusion-2-depth"
ddim = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(model_id, scheduler=ddim)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "two tigers"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe(
prompt=prompt,
image=init_image,
strength=0.75,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (480, 640, 3)
assert np.abs(expected_image - image).max() < 1e-3
def test_stable_diffusion_depth2img_intermediate_state(self):
number_of_steps = 0
def test_callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
test_callback_fn.has_been_called = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 60, 80)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array(
[-0.7825, 0.5786, -0.9125, -0.9885, -1.0071, 2.7126, -0.8490, 0.3776, -0.0791]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
elif step == 37:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 60, 80)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array(
[-0.6110, -0.2347, -0.5115, -1.1383, -1.4755, -0.5970, -0.9050, -0.7199, -0.8417]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-2
test_callback_fn.has_been_called = False
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/depth2img/two_cats.png"
)
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2-depth")
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "two tigers"
generator = torch.Generator(device=torch_device).manual_seed(0)
pipe(
prompt=prompt,
image=init_image,
strength=0.75,
num_inference_steps=50,
generator=generator,
callback=test_callback_fn,
callback_steps=1,
)
assert test_callback_fn.has_been_called
assert number_of_steps == 37
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/depth2img/sketch-mountains-input.jpg"
)
init_image = init_image.resize((768, 512))
model_id = "stabilityai/stable-diffusion-2-depth"
lms = LMSDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(
model_id, scheduler=lms, safety_checker=None, revision="fp16", torch_dtype=torch.float16
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
prompt = "A fantasy landscape, trending on artstation"
generator = torch.Generator(device=torch_device).manual_seed(0)
_ = pipe(
prompt=prompt,
image=init_image,
strength=0.75,
guidance_scale=7.5,
generator=generator,
output_type="np",
num_inference_steps=5,
)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 2.9 GB is allocated
assert mem_bytes < 2.9 * 10**9

View File

@ -26,7 +26,6 @@ import torch
import PIL import PIL
import safetensors.torch import safetensors.torch
import transformers
from diffusers import ( from diffusers import (
AutoencoderKL, AutoencoderKL,
DDIMPipeline, DDIMPipeline,
@ -533,9 +532,8 @@ class PipelineFastTests(unittest.TestCase):
# Validate that the text encoder safetensor exists and are of the correct format # Validate that the text encoder safetensor exists and are of the correct format
text_encoder_path = os.path.join(tmpdirname, "text_encoder", "model.safetensors") text_encoder_path = os.path.join(tmpdirname, "text_encoder", "model.safetensors")
if transformers.__version__ >= "4.25.1": assert os.path.exists(text_encoder_path), f"Could not find {text_encoder_path}"
assert os.path.exists(text_encoder_path), f"Could not find {text_encoder_path}" _ = safetensors.torch.load_file(text_encoder_path)
_ = safetensors.torch.load_file(text_encoder_path)
pipeline = StableDiffusionPipeline.from_pretrained(tmpdirname) pipeline = StableDiffusionPipeline.from_pretrained(tmpdirname)
assert pipeline.unet is not None assert pipeline.unet is not None

View File

@ -11,7 +11,13 @@ from typing import Callable, Union
import numpy as np import numpy as np
import torch import torch
from diffusers import CycleDiffusionPipeline, DanceDiffusionPipeline, DiffusionPipeline, StableDiffusionImg2ImgPipeline from diffusers import (
CycleDiffusionPipeline,
DanceDiffusionPipeline,
DiffusionPipeline,
StableDiffusionDepth2ImgPipeline,
StableDiffusionImg2ImgPipeline,
)
from diffusers.utils.import_utils import is_accelerate_available, is_xformers_available from diffusers.utils.import_utils import is_accelerate_available, is_xformers_available
from diffusers.utils.testing_utils import require_torch, torch_device from diffusers.utils.testing_utils import require_torch, torch_device
@ -281,6 +287,7 @@ class PipelineTesterMixin:
DanceDiffusionPipeline, DanceDiffusionPipeline,
CycleDiffusionPipeline, CycleDiffusionPipeline,
StableDiffusionImg2ImgPipeline, StableDiffusionImg2ImgPipeline,
StableDiffusionDepth2ImgPipeline,
): ):
# FIXME: inconsistent outputs on MPS # FIXME: inconsistent outputs on MPS
return return

View File

@ -91,7 +91,8 @@ def read_init():
objects.append(line[8:-2]) objects.append(line[8:-2])
line_index += 1 line_index += 1
backend_specific_objects[backend] = objects if len(objects) > 0:
backend_specific_objects[backend] = objects
else: else:
line_index += 1 line_index += 1