diff --git a/src/diffusers/models/attention.py b/src/diffusers/models/attention.py index 094ca0fb..accddacd 100644 --- a/src/diffusers/models/attention.py +++ b/src/diffusers/models/attention.py @@ -137,18 +137,18 @@ class SpatialTransformer(nn.Module): for block in self.transformer_blocks: block._set_attention_slice(slice_size) - def forward(self, x, context=None): + def forward(self, hidden_states, context=None): # note: if no context is given, cross-attention defaults to self-attention - b, c, h, w = x.shape - x_in = x - x = self.norm(x) - x = self.proj_in(x) - x = x.permute(0, 2, 3, 1).reshape(b, h * w, c) + batch, channel, height, weight = hidden_states.shape + residual = hidden_states + hidden_states = self.norm(hidden_states) + hidden_states = self.proj_in(hidden_states) + hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, channel) for block in self.transformer_blocks: - x = block(x, context=context) - x = x.reshape(b, h, w, c).permute(0, 3, 1, 2) - x = self.proj_out(x) - return x + x_in + hidden_states = block(hidden_states, context=context) + hidden_states = hidden_states.reshape(batch, height, weight, channel).permute(0, 3, 1, 2) + hidden_states = self.proj_out(hidden_states) + return hidden_states + residual class BasicTransformerBlock(nn.Module): @@ -192,12 +192,12 @@ class BasicTransformerBlock(nn.Module): self.attn1._slice_size = slice_size self.attn2._slice_size = slice_size - def forward(self, x, context=None): - x = x.contiguous() if x.device.type == "mps" else x - x = self.attn1(self.norm1(x)) + x - x = self.attn2(self.norm2(x), context=context) + x - x = self.ff(self.norm3(x)) + x - return x + def forward(self, hidden_states, context=None): + hidden_states = hidden_states.contiguous() if hidden_states.device.type == "mps" else hidden_states + hidden_states = self.attn1(self.norm1(hidden_states)) + hidden_states + hidden_states = self.attn2(self.norm2(hidden_states), context=context) + hidden_states + hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states + return hidden_states class CrossAttention(nn.Module): @@ -247,22 +247,22 @@ class CrossAttention(nn.Module): tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) return tensor - def forward(self, x, context=None, mask=None): - batch_size, sequence_length, dim = x.shape + def forward(self, hidden_states, context=None, mask=None): + batch_size, sequence_length, dim = hidden_states.shape - q = self.to_q(x) - context = context if context is not None else x - k = self.to_k(context) - v = self.to_v(context) + query = self.to_q(hidden_states) + context = context if context is not None else hidden_states + key = self.to_k(context) + value = self.to_v(context) - q = self.reshape_heads_to_batch_dim(q) - k = self.reshape_heads_to_batch_dim(k) - v = self.reshape_heads_to_batch_dim(v) + query = self.reshape_heads_to_batch_dim(query) + key = self.reshape_heads_to_batch_dim(key) + value = self.reshape_heads_to_batch_dim(value) # TODO(PVP) - mask is currently never used. Remember to re-implement when used # attention, what we cannot get enough of - hidden_states = self._attention(q, k, v, sequence_length, dim) + hidden_states = self._attention(query, key, value, sequence_length, dim) return self.to_out(hidden_states) @@ -308,8 +308,8 @@ class FeedForward(nn.Module): self.net = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)) - def forward(self, x): - return self.net(x) + def forward(self, hidden_states): + return self.net(hidden_states) # feedforward @@ -326,6 +326,6 @@ class GEGLU(nn.Module): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2) - def forward(self, x): - x, gate = self.proj(x).chunk(2, dim=-1) - return x * F.gelu(gate) + def forward(self, hidden_states): + hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1) + return hidden_states * F.gelu(gate)