Convert glide weights

This commit is contained in:
anton-l 2022-06-07 16:35:34 +02:00
parent 7f6a36c3b1
commit 6292107f16
4 changed files with 64 additions and 5 deletions

View File

@ -0,0 +1,60 @@
import argparse
import torch
from torch import nn
from transformers import CLIPTextConfig, CLIPTextModel, GPT2Tokenizer
# wget https://openaipublic.blob.core.windows.net/diffusion/dec-2021/base.pt
state_dict = torch.load("base.pt", map_location="cpu")
state_dict = {k: nn.Parameter(v) for k, v in state_dict.items()}
config = CLIPTextConfig(
hidden_size=512,
intermediate_size=2048,
num_hidden_layers=16,
num_attention_heads=8,
max_position_embeddings=128
)
model = CLIPTextModel(config).eval()
tokenizer = GPT2Tokenizer("./glide-base/vocab.json", "./glide-base/merges.txt", pad_token="<|endoftext|>")
tokenizer.save_pretrained("./glide-base")
hf_encoder = model.text_model
hf_encoder.embeddings.token_embedding.weight = state_dict["token_embedding.weight"]
hf_encoder.embeddings.position_embedding.weight.data = state_dict["positional_embedding"]
hf_encoder.embeddings.padding_embedding.weight.data = state_dict["padding_embedding"]
hf_encoder.final_layer_norm.weight = state_dict["final_ln.weight"]
hf_encoder.final_layer_norm.bias = state_dict["final_ln.bias"]
for layer_idx in range(config.num_hidden_layers):
hf_layer = hf_encoder.encoder.layers[layer_idx]
q_proj, k_proj, v_proj = state_dict[f"transformer.resblocks.{layer_idx}.attn.c_qkv.weight"].chunk(3, dim=0)
q_proj_bias, k_proj_bias, v_proj_bias = state_dict[f"transformer.resblocks.{layer_idx}.attn.c_qkv.bias"].chunk(3, dim=0)
hf_layer.self_attn.q_proj.weight.data = q_proj
hf_layer.self_attn.q_proj.bias.data = q_proj_bias
hf_layer.self_attn.k_proj.weight.data = k_proj
hf_layer.self_attn.k_proj.bias.data = k_proj_bias
hf_layer.self_attn.v_proj.weight.data = v_proj
hf_layer.self_attn.v_proj.bias.data = v_proj_bias
hf_layer.self_attn.out_proj.weight = state_dict[f"transformer.resblocks.{layer_idx}.attn.c_proj.weight"]
hf_layer.self_attn.out_proj.bias = state_dict[f"transformer.resblocks.{layer_idx}.attn.c_proj.bias"]
hf_layer.layer_norm1.weight = state_dict[f"transformer.resblocks.{layer_idx}.ln_1.weight"]
hf_layer.layer_norm1.bias = state_dict[f"transformer.resblocks.{layer_idx}.ln_1.bias"]
hf_layer.layer_norm2.weight = state_dict[f"transformer.resblocks.{layer_idx}.ln_2.weight"]
hf_layer.layer_norm2.bias = state_dict[f"transformer.resblocks.{layer_idx}.ln_2.bias"]
hf_layer.mlp.fc1.weight = state_dict[f"transformer.resblocks.{layer_idx}.mlp.c_fc.weight"]
hf_layer.mlp.fc1.bias = state_dict[f"transformer.resblocks.{layer_idx}.mlp.c_fc.bias"]
hf_layer.mlp.fc2.weight = state_dict[f"transformer.resblocks.{layer_idx}.mlp.c_proj.weight"]
hf_layer.mlp.fc2.bias = state_dict[f"transformer.resblocks.{layer_idx}.mlp.c_proj.bias"]
inputs = tokenizer(["an oil painting of a corgi", ""], padding="max_length", max_length=128, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
model.save_pretrained("./glide-base")

View File

@ -1 +0,0 @@
#!/usr/bin/env python3

View File

@ -6,6 +6,7 @@ generator = torch.Generator()
generator = generator.manual_seed(0)
# 1. Load models
scheduler = GaussianDDPMScheduler.from_config("fusing/glide-base")
model = UNetGLIDEModel.from_pretrained("fusing/glide-base")

View File

@ -5,9 +5,8 @@ import torch
import torch.nn as nn
import torch.nn.functional as F
from ..configuration_utils import Config
from ..modeling_utils import PreTrainedModel
from ..configuration_utils import ConfigMixin
from ..modeling_utils import ModelMixin
def convert_module_to_f16(l):
"""
@ -388,7 +387,7 @@ class QKVAttention(nn.Module):
return a.reshape(bs, -1, length)
class UNetGLIDEModel(PreTrainedModel, Config):
class UNetGLIDEModel(ModelMixin, ConfigMixin):
"""
The full UNet model with attention and timestep embedding.