Add safety module (#213)
* add SafetyChecker * better name, fix checker * add checker in main init * remove from main init * update logic to detect pipeline module * style * handle all safety logic in safety checker * draw text * can't draw * small fixes * treat special care as nsfw * remove commented lines * update safety checker
This commit is contained in:
parent
e30e1b89d0
commit
65ea7d6b62
|
@ -42,6 +42,7 @@ LOADABLE_CLASSES = {
|
||||||
"PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
|
"PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
|
||||||
"PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"],
|
"PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"],
|
||||||
"PreTrainedModel": ["save_pretrained", "from_pretrained"],
|
"PreTrainedModel": ["save_pretrained", "from_pretrained"],
|
||||||
|
"FeatureExtractionMixin": ["save_pretrained", "from_pretrained"],
|
||||||
},
|
},
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -63,9 +64,9 @@ class DiffusionPipeline(ConfigMixin):
|
||||||
library = module.__module__.split(".")[0]
|
library = module.__module__.split(".")[0]
|
||||||
|
|
||||||
# check if the module is a pipeline module
|
# check if the module is a pipeline module
|
||||||
pipeline_file = module.__module__.split(".")[-1]
|
|
||||||
pipeline_dir = module.__module__.split(".")[-2]
|
pipeline_dir = module.__module__.split(".")[-2]
|
||||||
is_pipeline_module = pipeline_file == "pipeline_" + pipeline_dir and hasattr(pipelines, pipeline_dir)
|
path = module.__module__.split(".")
|
||||||
|
is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir)
|
||||||
|
|
||||||
# if library is not in LOADABLE_CLASSES, then it is a custom module.
|
# if library is not in LOADABLE_CLASSES, then it is a custom module.
|
||||||
# Or if it's a pipeline module, then the module is inside the pipeline
|
# Or if it's a pipeline module, then the module is inside the pipeline
|
||||||
|
|
|
@ -3,4 +3,4 @@ from ...utils import is_transformers_available
|
||||||
|
|
||||||
|
|
||||||
if is_transformers_available():
|
if is_transformers_available():
|
||||||
from .pipeline_stable_diffusion import StableDiffusionPipeline
|
from .pipeline_stable_diffusion import StableDiffusionPipeline, StableDiffusionSafetyChecker
|
||||||
|
|
|
@ -4,11 +4,12 @@ from typing import List, Optional, Union
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from tqdm.auto import tqdm
|
from tqdm.auto import tqdm
|
||||||
from transformers import CLIPTextModel, CLIPTokenizer
|
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
||||||
|
|
||||||
from ...models import AutoencoderKL, UNet2DConditionModel
|
from ...models import AutoencoderKL, UNet2DConditionModel
|
||||||
from ...pipeline_utils import DiffusionPipeline
|
from ...pipeline_utils import DiffusionPipeline
|
||||||
from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
||||||
|
from .safety_checker import StableDiffusionSafetyChecker
|
||||||
|
|
||||||
|
|
||||||
class StableDiffusionPipeline(DiffusionPipeline):
|
class StableDiffusionPipeline(DiffusionPipeline):
|
||||||
|
@ -19,10 +20,20 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
||||||
tokenizer: CLIPTokenizer,
|
tokenizer: CLIPTokenizer,
|
||||||
unet: UNet2DConditionModel,
|
unet: UNet2DConditionModel,
|
||||||
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
||||||
|
safety_checker: StableDiffusionSafetyChecker,
|
||||||
|
feature_extractor: CLIPFeatureExtractor,
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
scheduler = scheduler.set_format("pt")
|
scheduler = scheduler.set_format("pt")
|
||||||
self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
|
self.register_modules(
|
||||||
|
vae=vae,
|
||||||
|
text_encoder=text_encoder,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
unet=unet,
|
||||||
|
scheduler=scheduler,
|
||||||
|
safety_checker=safety_checker,
|
||||||
|
feature_extractor=feature_extractor,
|
||||||
|
)
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def __call__(
|
def __call__(
|
||||||
|
@ -53,6 +64,7 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
||||||
self.unet.to(torch_device)
|
self.unet.to(torch_device)
|
||||||
self.vae.to(torch_device)
|
self.vae.to(torch_device)
|
||||||
self.text_encoder.to(torch_device)
|
self.text_encoder.to(torch_device)
|
||||||
|
self.safety_checker.to(torch_device)
|
||||||
|
|
||||||
# get prompt text embeddings
|
# get prompt text embeddings
|
||||||
text_input = self.tokenizer(
|
text_input = self.tokenizer(
|
||||||
|
@ -136,7 +148,12 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
||||||
|
|
||||||
image = (image / 2 + 0.5).clamp(0, 1)
|
image = (image / 2 + 0.5).clamp(0, 1)
|
||||||
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
||||||
|
|
||||||
|
# run safety checker
|
||||||
|
safety_cheker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(torch_device)
|
||||||
|
image, has_nsfw_concept = self.safety_checker(images=image, clip_input=safety_cheker_input.pixel_values)
|
||||||
|
|
||||||
if output_type == "pil":
|
if output_type == "pil":
|
||||||
image = self.numpy_to_pil(image)
|
image = self.numpy_to_pil(image)
|
||||||
|
|
||||||
return {"sample": image}
|
return {"sample": image, "nsfw_content_detected": has_nsfw_concept}
|
||||||
|
|
|
@ -0,0 +1,77 @@
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
|
||||||
|
|
||||||
|
from ...utils import logging
|
||||||
|
|
||||||
|
|
||||||
|
logger = logging.get_logger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
def cosine_distance(image_embeds, text_embeds):
|
||||||
|
normalized_image_embeds = nn.functional.normalize(image_embeds)
|
||||||
|
normalized_text_embeds = nn.functional.normalize(text_embeds)
|
||||||
|
return torch.mm(normalized_image_embeds, normalized_text_embeds.T)
|
||||||
|
|
||||||
|
|
||||||
|
class StableDiffusionSafetyChecker(PreTrainedModel):
|
||||||
|
config_class = CLIPConfig
|
||||||
|
|
||||||
|
def __init__(self, config: CLIPConfig):
|
||||||
|
super().__init__(config)
|
||||||
|
|
||||||
|
self.vision_model = CLIPVisionModel(config.vision_config)
|
||||||
|
self.visual_projection = nn.Linear(config.vision_config.hidden_size, config.projection_dim, bias=False)
|
||||||
|
|
||||||
|
self.concept_embeds = nn.Parameter(torch.ones(17, config.projection_dim), requires_grad=False)
|
||||||
|
self.special_care_embeds = nn.Parameter(torch.ones(3, config.projection_dim), requires_grad=False)
|
||||||
|
|
||||||
|
self.register_buffer("concept_embeds_weights", torch.ones(17))
|
||||||
|
self.register_buffer("special_care_embeds_weights", torch.ones(3))
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def forward(self, clip_input, images):
|
||||||
|
pooled_output = self.vision_model(clip_input)[1] # pooled_output
|
||||||
|
image_embeds = self.visual_projection(pooled_output)
|
||||||
|
|
||||||
|
special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds).cpu().numpy()
|
||||||
|
cos_dist = cosine_distance(image_embeds, self.concept_embeds).cpu().numpy()
|
||||||
|
|
||||||
|
result = []
|
||||||
|
batch_size = image_embeds.shape[0]
|
||||||
|
for i in range(batch_size):
|
||||||
|
result_img = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []}
|
||||||
|
adjustment = 0.05
|
||||||
|
|
||||||
|
for concet_idx in range(len(special_cos_dist[0])):
|
||||||
|
concept_cos = special_cos_dist[i][concet_idx]
|
||||||
|
concept_threshold = self.special_care_embeds_weights[concet_idx].item()
|
||||||
|
result_img["special_scores"][concet_idx] = round(concept_cos - concept_threshold + adjustment, 3)
|
||||||
|
if result_img["special_scores"][concet_idx] > 0:
|
||||||
|
result_img["special_care"].append({concet_idx, result_img["special_scores"][concet_idx]})
|
||||||
|
adjustment = 0.01
|
||||||
|
|
||||||
|
for concet_idx in range(len(cos_dist[0])):
|
||||||
|
concept_cos = cos_dist[i][concet_idx]
|
||||||
|
concept_threshold = self.concept_embeds_weights[concet_idx].item()
|
||||||
|
result_img["concept_scores"][concet_idx] = round(concept_cos - concept_threshold + adjustment, 3)
|
||||||
|
if result_img["concept_scores"][concet_idx] > 0:
|
||||||
|
result_img["bad_concepts"].append(concet_idx)
|
||||||
|
|
||||||
|
result.append(result_img)
|
||||||
|
|
||||||
|
has_nsfw_concepts = [len(result[i]["bad_concepts"]) > 0 or i in range(len(result))]
|
||||||
|
|
||||||
|
for idx, has_nsfw_concept in enumerate(has_nsfw_concepts):
|
||||||
|
if has_nsfw_concept:
|
||||||
|
images[idx] = np.zeros(images[idx].shape) # black image
|
||||||
|
|
||||||
|
if any(has_nsfw_concepts):
|
||||||
|
logger.warning(
|
||||||
|
"Potential NSFW content was detected in one or more images. A black image will be returned instead."
|
||||||
|
" Try again with a different prompt and/or seed."
|
||||||
|
)
|
||||||
|
|
||||||
|
return images, has_nsfw_concepts
|
Loading…
Reference in New Issue