Reproducibility 3/3 (#1924)

* make tests deterministic

* run slow tests

* prepare for testing

* finish

* refactor

* add print statements

* finish more

* correct some test failures

* more fixes

* set up to correct tests

* more corrections

* up

* fix more

* more prints

* add

* up

* up

* up

* uP

* uP

* more fixes

* uP

* up

* up

* up

* up

* fix more

* up

* up

* clean tests

* up

* up

* up

* more fixes

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* make

* correct

* finish

* finish

Co-authored-by: Suraj Patil <surajp815@gmail.com>
This commit is contained in:
Patrick von Platen 2023-01-25 14:44:22 +02:00 committed by GitHub
parent 008c22d334
commit 6ba2231d72
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
47 changed files with 674 additions and 449 deletions

View File

@ -32,6 +32,8 @@
title: Text-Guided Depth-to-Image
- local: using-diffusers/reusing_seeds
title: Reusing seeds for deterministic generation
- local: using-diffusers/reproducibility
title: Reproducibility
- local: using-diffusers/custom_pipeline_examples
title: Community Pipelines
- local: using-diffusers/contribute_pipeline

View File

@ -0,0 +1,159 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Reproducibility
Before reading about reproducibility for Diffusers, it is strongly recommended to take a look at
[PyTorch's statement about reproducibility](https://pytorch.org/docs/stable/notes/randomness.html).
PyTorch states that
> *completely reproducible results are not guaranteed across PyTorch releases, individual commits, or different platforms.*
While one can never expect the same results across platforms, one can expect results to be reproducible
across releases, platforms, etc... within a certain tolerance. However, this tolerance strongly varies
depending on the diffusion pipeline and checkpoint.
In the following, we show how to best control sources of randomness for diffusion models.
## Inference
During inference, diffusion pipelines heavily rely on random sampling operations, such as the creating the
gaussian noise tensors to be denoised and adding noise to the scheduling step.
Let's have a look at an example. We run the [DDIM pipeline](./api/pipelines/ddim.mdx)
for just two inference steps and return a numpy tensor to look into the numerical values of the output.
```python
from diffusers import DDIMPipeline
import numpy as np
model_id = "google/ddpm-cifar10-32"
# load model and scheduler
ddim = DDIMPipeline.from_pretrained(model_id)
# run pipeline for just two steps and return numpy tensor
image = ddim(num_inference_steps=2, output_type="np").images
print(np.abs(image).sum())
```
Running the above prints a value of 1464.2076, but running it again prints a different
value of 1495.1768. What is going on here? Every time the pipeline is run, gaussian noise
is created and step-wise denoised. To create the gaussian noise with [`torch.randn`](https://pytorch.org/docs/stable/generated/torch.randn.html), a different random seed is taken every time, thus leading to a different result.
This is a desired property of diffusion pipelines, as it means that the pipeline can create a different random image every time it is run. In many cases, one would like to generate the exact same image of a certain
run, for which case an instance of a [PyTorch generator](https://pytorch.org/docs/stable/generated/torch.randn.html) has to be passed:
```python
import torch
from diffusers import DDIMPipeline
import numpy as np
model_id = "google/ddpm-cifar10-32"
# load model and scheduler
ddim = DDIMPipeline.from_pretrained(model_id)
# create a generator for reproducibility
generator = torch.Generator(device="cpu").manual_seed(0)
# run pipeline for just two steps and return numpy tensor
image = ddim(num_inference_steps=2, output_type="np", generator=generator).images
print(np.abs(image).sum())
```
Running the above always prints a value of 1491.1711 - also upon running it again because we
define the generator object to be passed to all random functions of the pipeline.
If you run this code snippet on your specific hardware and version, you should get a similar, if not the same, result.
<Tip>
It might be a bit unintuitive at first to pass `generator` objects to the pipelines instead of
just integer values representing the seed, but this is the recommended design when dealing with
probabilistic models in PyTorch as generators are *random states* that are advanced and can thus be
passed to multiple pipelines in a sequence.
</Tip>
Great! Now, we know how to write reproducible pipelines, but it gets a bit trickier since the above example only runs on the CPU. How do we also achieve reproducibility on GPU?
In short, one should not expect full reproducibility across different hardware when running pipelines on GPU
as matrix multiplications are less deterministic on GPU than on CPU and diffusion pipelines tend to require
a lot of matrix multiplications. Let's see what we can do to keep the randomness within limits across
different GPU hardware.
To achieve maximum speed performance, it is recommended to create the generator directly on GPU when running
the pipeline on GPU:
```python
import torch
from diffusers import DDIMPipeline
import numpy as np
model_id = "google/ddpm-cifar10-32"
# load model and scheduler
ddim = DDIMPipeline.from_pretrained(model_id)
ddim.to("cuda")
# create a generator for reproducibility
generator = torch.Generator(device="cuda").manual_seed(0)
# run pipeline for just two steps and return numpy tensor
image = ddim(num_inference_steps=2, output_type="np", generator=generator).images
print(np.abs(image).sum())
```
Running the above now prints a value of 1389.8634 - even though we're using the exact same seed!
This is unfortunate as it means we cannot reproduce the results we achieved on GPU, also on CPU.
Nevertheless, it should be expected since the GPU uses a different random number generator than the CPU.
To circumvent this problem, we created a [`randn_tensor`](#diffusers.utils.randn_tensor) function, which can create random noise
on the CPU and then move the tensor to GPU if necessary. The function is used everywhere inside the pipelines allowing the user to **always** pass a CPU generator even if the pipeline is run on GPU:
```python
import torch
from diffusers import DDIMPipeline
import numpy as np
model_id = "google/ddpm-cifar10-32"
# load model and scheduler
ddim = DDIMPipeline.from_pretrained(model_id)
ddim.to("cuda")
# create a generator for reproducibility
generator = torch.manual_seed(0)
# run pipeline for just two steps and return numpy tensor
image = ddim(num_inference_steps=2, output_type="np", generator=generator).images
print(np.abs(image).sum())
```
Running the above now prints a value of 1491.1713, much closer to the value of 1491.1711 when
the pipeline is fully run on the CPU.
<Tip>
As a consequence, we recommend always passing a CPU generator if Reproducibility is important.
The loss of performance is often neglectable, but one can be sure to generate much more similar
values than if the pipeline would have been run on CPU.
</Tip>
Finally, we noticed that more complex pipelines, such as [`UnCLIPPipeline`] are often extremely
susceptible to precision error propagation and thus one cannot expect even similar results across
different GPU hardware or PyTorch versions. In such cases, one has to make sure to run
exactly the same hardware and PyTorch version for full Reproducibility.
## Randomness utilities
### randn_tensor
[[autodoc]] diffusers.utils.randn_tensor

View File

@ -17,7 +17,7 @@ from typing import List, Optional, Tuple, Union
import torch
from ...schedulers import DDIMScheduler
from ...utils import deprecate, randn_tensor
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
@ -78,24 +78,6 @@ class DDIMPipeline(DiffusionPipeline):
True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images.
"""
if (
generator is not None
and isinstance(generator, torch.Generator)
and generator.device.type != self.device.type
and self.device.type != "mps"
):
message = (
f"The `generator` device is `{generator.device}` and does not match the pipeline "
f"device `{self.device}`, so the `generator` will be ignored. "
f'Please use `generator=torch.Generator(device="{self.device}")` instead.'
)
deprecate(
"generator.device == 'cpu'",
"0.13.0",
message,
)
generator = None
# Sample gaussian noise to begin loop
if isinstance(self.unet.sample_size, int):
image_shape = (batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size)

View File

@ -76,6 +76,7 @@ if is_torch_available():
load_numpy,
nightly,
parse_flag_from_env,
print_tensor_test,
require_torch_gpu,
slow,
torch_all_close,

View File

@ -8,7 +8,7 @@ import urllib.parse
from distutils.util import strtobool
from io import BytesIO, StringIO
from pathlib import Path
from typing import Union
from typing import Optional, Union
import numpy as np
@ -45,6 +45,21 @@ def torch_all_close(a, b, *args, **kwargs):
return True
def print_tensor_test(tensor, filename="test_corrections.txt", expected_tensor_name="expected_slice"):
test_name = os.environ.get("PYTEST_CURRENT_TEST")
if not torch.is_tensor(tensor):
tensor = torch.from_numpy(tensor)
tensor_str = str(tensor.detach().cpu().flatten().to(torch.float32)).replace("\n", "")
# format is usually:
# expected_slice = np.array([-0.5713, -0.3018, -0.9814, 0.04663, -0.879, 0.76, -1.734, 0.1044, 1.161])
output_str = tensor_str.replace("tensor", f"{expected_tensor_name} = np.array")
test_file, test_class, test_fn = test_name.split("::")
test_fn = test_fn.split()[0]
with open(filename, "a") as f:
print(";".join([test_file, test_class, test_fn, output_str]), file=f)
def get_tests_dir(append_path=None):
"""
Args:
@ -150,9 +165,13 @@ def require_onnxruntime(test_case):
return unittest.skipUnless(is_onnx_available(), "test requires onnxruntime")(test_case)
def load_numpy(arry: Union[str, np.ndarray]) -> np.ndarray:
def load_numpy(arry: Union[str, np.ndarray], local_path: Optional[str] = None) -> np.ndarray:
if isinstance(arry, str):
if arry.startswith("http://") or arry.startswith("https://"):
# local_path = "/home/patrick_huggingface_co/"
if local_path is not None:
# local_path can be passed to correct images of tests
return os.path.join(local_path, "/".join([arry.split("/")[-5], arry.split("/")[-2], arry.split("/")[-1]]))
elif arry.startswith("http://") or arry.startswith("https://"):
response = requests.get(arry)
response.raise_for_status()
arry = np.load(BytesIO(response.content))

View File

@ -166,7 +166,7 @@ class AutoencoderKLIntegrationTests(unittest.TestCase):
def get_generator(self, seed=0):
if torch_device == "mps":
return torch.Generator().manual_seed(seed)
return torch.manual_seed(seed)
return torch.Generator(device=torch_device).manual_seed(seed)
@parameterized.expand(

View File

@ -188,6 +188,7 @@ class AltDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
expected_slice = np.array(
[0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
@ -207,20 +208,16 @@ class AltDiffusionPipelineIntegrationTests(unittest.TestCase):
alt_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
with torch.autocast("cuda"):
output = alt_pipe(
[prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np"
)
generator = torch.manual_seed(0)
output = alt_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np")
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array(
[0.8720703, 0.87109375, 0.87402344, 0.87109375, 0.8779297, 0.8925781, 0.8823242, 0.8808594, 0.8613281]
)
expected_slice = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_alt_diffusion_fast_ddim(self):
@ -231,44 +228,14 @@ class AltDiffusionPipelineIntegrationTests(unittest.TestCase):
alt_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
with torch.autocast("cuda"):
output = alt_pipe([prompt], generator=generator, num_inference_steps=2, output_type="numpy")
output = alt_pipe([prompt], generator=generator, num_inference_steps=2, output_type="numpy")
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array(
[0.9267578, 0.9301758, 0.9013672, 0.9345703, 0.92578125, 0.94433594, 0.9423828, 0.9423828, 0.9160156]
)
expected_slice = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_alt_diffusion_text2img_pipeline_fp16(self):
torch.cuda.reset_peak_memory_stats()
model_id = "BAAI/AltDiffusion"
pipe = AltDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
prompt = "a photograph of an astronaut riding a horse"
generator = torch.Generator(device=torch_device).manual_seed(0)
output_chunked = pipe(
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
)
image_chunked = output_chunked.images
generator = torch.Generator(device=torch_device).manual_seed(0)
with torch.autocast(torch_device):
output = pipe(
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
)
image = output.images
# Make sure results are close enough
diff = np.abs(image_chunked.flatten() - image.flatten())
# They ARE different since ops are not run always at the same precision
# however, they should be extremely close.
assert diff.mean() < 2e-2

View File

@ -162,6 +162,7 @@ class AltDiffusionImg2ImgPipelineFastTests(unittest.TestCase):
expected_slice = np.array(
[0.41293705, 0.38656747, 0.40876025, 0.4782187, 0.4656803, 0.41394007, 0.4142093, 0.47150758, 0.4570448]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1.5e-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1.5e-3
@ -196,7 +197,7 @@ class AltDiffusionImg2ImgPipelineFastTests(unittest.TestCase):
alt_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
image = alt_pipe(
[prompt],
generator=generator,
@ -227,7 +228,7 @@ class AltDiffusionImg2ImgPipelineFastTests(unittest.TestCase):
prompt = "A fantasy landscape, trending on artstation"
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
output = pipe(
prompt=prompt,
image=init_image,
@ -241,7 +242,8 @@ class AltDiffusionImg2ImgPipelineFastTests(unittest.TestCase):
image_slice = image[255:258, 383:386, -1]
assert image.shape == (504, 760, 3)
expected_slice = np.array([0.3252, 0.3340, 0.3418, 0.3263, 0.3346, 0.3300, 0.3163, 0.3470, 0.3427])
expected_slice = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
@ -275,7 +277,7 @@ class AltDiffusionImg2ImgPipelineIntegrationTests(unittest.TestCase):
prompt = "A fantasy landscape, trending on artstation"
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
output = pipe(
prompt=prompt,
image=init_image,

View File

@ -119,6 +119,7 @@ class PipelineFastTests(unittest.TestCase):
image_slice = np.frombuffer(image.tobytes(), dtype="uint8")[:10]
image_from_tuple_slice = np.frombuffer(image_from_tuple.tobytes(), dtype="uint8")[:10]
expected_slice = np.array([255, 255, 255, 0, 181, 0, 124, 0, 15, 255])
assert np.abs(image_slice.flatten() - expected_slice).max() == 0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() == 0
@ -142,6 +143,7 @@ class PipelineFastTests(unittest.TestCase):
)
image_slice = np.frombuffer(image.tobytes(), dtype="uint8")[:10]
expected_slice = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121])
assert np.abs(image_slice.flatten() - expected_slice).max() == 0
dummy_unet_condition = self.dummy_unet_condition
@ -155,6 +157,7 @@ class PipelineFastTests(unittest.TestCase):
image = output.images[0]
image_slice = np.frombuffer(image.tobytes(), dtype="uint8")[:10]
expected_slice = np.array([120, 139, 147, 123, 124, 96, 115, 121, 126, 144])
assert np.abs(image_slice.flatten() - expected_slice).max() == 0
@ -183,4 +186,5 @@ class PipelineIntegrationTests(unittest.TestCase):
assert image.height == pipe.unet.sample_size[0] and image.width == pipe.unet.sample_size[1]
image_slice = np.frombuffer(image.tobytes(), dtype="uint8")[:10]
expected_slice = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26])
assert np.abs(image_slice.flatten() - expected_slice).max() == 0

View File

@ -104,14 +104,15 @@ class PipelineIntegrationTests(unittest.TestCase):
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device=device).manual_seed(0)
generator = torch.manual_seed(0)
output = pipe(generator=generator, num_inference_steps=100, audio_length_in_s=4.096)
audio = output.audios
audio_slice = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
expected_slice = np.array([-0.1576, -0.1526, -0.127, -0.2699, -0.2762, -0.2487])
expected_slice = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020])
assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2
def test_dance_diffusion_fp16(self):
@ -121,12 +122,13 @@ class PipelineIntegrationTests(unittest.TestCase):
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device=device).manual_seed(0)
generator = torch.manual_seed(0)
output = pipe(generator=generator, num_inference_steps=100, audio_length_in_s=4.096)
audio = output.audios
audio_slice = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
expected_slice = np.array([-0.1693, -0.1698, -0.1447, -0.3044, -0.3203, -0.2937])
expected_slice = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341])
assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2

View File

@ -82,25 +82,6 @@ class DDIMPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
@slow
@require_torch_gpu
class DDIMPipelineIntegrationTests(unittest.TestCase):
def test_inference_ema_bedroom(self):
model_id = "google/ddpm-ema-bedroom-256"
unet = UNet2DModel.from_pretrained(model_id)
scheduler = DDIMScheduler.from_pretrained(model_id)
ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
ddpm.to(torch_device)
ddpm.set_progress_bar_config(disable=None)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = ddpm(generator=generator, output_type="numpy").images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.1546, 0.1561, 0.1595, 0.1564, 0.1569, 0.1585, 0.1554, 0.1550, 0.1575])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_inference_cifar10(self):
model_id = "google/ddpm-cifar10-32"
@ -111,11 +92,32 @@ class DDIMPipelineIntegrationTests(unittest.TestCase):
ddim.to(torch_device)
ddim.set_progress_bar_config(disable=None)
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
image = ddim(generator=generator, eta=0.0, output_type="numpy").images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.2060, 0.2042, 0.2022, 0.2193, 0.2146, 0.2110, 0.2471, 0.2446, 0.2388])
expected_slice = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_inference_ema_bedroom(self):
model_id = "google/ddpm-ema-bedroom-256"
unet = UNet2DModel.from_pretrained(model_id)
scheduler = DDIMScheduler.from_pretrained(model_id)
ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
ddpm.to(torch_device)
ddpm.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
image = ddpm(generator=generator, output_type="numpy").images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

View File

@ -63,6 +63,7 @@ class DDPMPipelineFastTests(unittest.TestCase):
expected_slice = np.array(
[5.589e-01, 7.089e-01, 2.632e-01, 6.841e-01, 1.000e-04, 9.999e-01, 1.973e-01, 1.000e-04, 8.010e-02]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@ -79,14 +80,10 @@ class DDPMPipelineFastTests(unittest.TestCase):
if torch_device == "mps":
_ = ddpm(num_inference_steps=1)
if torch_device == "mps":
# device type MPS is not supported for torch.Generator() api.
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
image = ddpm(generator=generator, num_inference_steps=2, output_type="numpy").images
generator = generator.manual_seed(0)
generator = torch.manual_seed(0)
image_eps = ddpm(generator=generator, num_inference_steps=2, output_type="numpy", predict_epsilon=False)[0]
image_slice = image[0, -3:, -3:, -1]
@ -108,14 +105,10 @@ class DDPMPipelineFastTests(unittest.TestCase):
if torch_device == "mps":
_ = ddpm(num_inference_steps=1)
if torch_device == "mps":
# device type MPS is not supported for torch.Generator() api.
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
image = ddpm(generator=generator, num_inference_steps=2, output_type="numpy").images
generator = generator.manual_seed(0)
generator = torch.manual_seed(0)
image_eps = ddpm(generator=generator, num_inference_steps=2, output_type="numpy")[0]
image_slice = image[0, -3:, -3:, -1]
@ -139,11 +132,12 @@ class DDPMPipelineIntegrationTests(unittest.TestCase):
ddpm.to(torch_device)
ddpm.set_progress_bar_config(disable=None)
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
image = ddpm(generator=generator, output_type="numpy").images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.4454, 0.2025, 0.0315, 0.3023, 0.2575, 0.1031, 0.0953, 0.1604, 0.2020])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

View File

@ -114,15 +114,14 @@ class DiTPipelineIntegrationTests(unittest.TestCase):
assert np.abs((expected_image - image).max()) < 1e-3
def test_dit_512_fp16(self):
generator = torch.manual_seed(0)
pipe = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512", torch_dtype=torch.float16)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.to("cuda")
words = ["vase", "umbrella", "white shark", "white wolf"]
words = ["vase", "umbrella"]
ids = pipe.get_label_ids(words)
generator = torch.manual_seed(0)
images = pipe(ids, generator=generator, num_inference_steps=25, output_type="np").images
for word, image in zip(words, images):
@ -130,4 +129,5 @@ class DiTPipelineIntegrationTests(unittest.TestCase):
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
f"/dit/{word}_fp16.npy"
)
assert np.abs((expected_image - image).max()) < 1e-2
assert np.abs((expected_image - image).max()) < 7.5e-1

View File

@ -59,6 +59,7 @@ class KarrasVePipelineFastTests(unittest.TestCase):
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@ -81,4 +82,5 @@ class KarrasVePipelineIntegrationTests(unittest.TestCase):
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

View File

@ -126,7 +126,7 @@ class LDMTextToImagePipelineSlowTests(unittest.TestCase):
torch.cuda.empty_cache()
def get_inputs(self, device, dtype=torch.float32, seed=0):
generator = torch.Generator(device=device).manual_seed(seed)
generator = torch.manual_seed(seed)
latents = np.random.RandomState(seed).standard_normal((1, 4, 32, 32))
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
inputs = {
@ -162,7 +162,7 @@ class LDMTextToImagePipelineNightlyTests(unittest.TestCase):
torch.cuda.empty_cache()
def get_inputs(self, device, dtype=torch.float32, seed=0):
generator = torch.Generator(device=device).manual_seed(seed)
generator = torch.manual_seed(seed)
latents = np.random.RandomState(seed).standard_normal((1, 4, 32, 32))
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
inputs = {

View File

@ -83,6 +83,7 @@ class LDMSuperResolutionPipelineFastTests(unittest.TestCase):
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.8678, 0.8245, 0.6381, 0.6830, 0.4385, 0.5599, 0.4641, 0.6201, 0.5150])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
@ -101,8 +102,7 @@ class LDMSuperResolutionPipelineFastTests(unittest.TestCase):
init_image = self.dummy_image.to(torch_device)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = ldm(init_image, generator=generator, num_inference_steps=2, output_type="numpy").images
image = ldm(init_image, num_inference_steps=2, output_type="numpy").images
assert image.shape == (1, 64, 64, 3)
@ -121,11 +121,12 @@ class LDMSuperResolutionPipelineIntegrationTests(unittest.TestCase):
ldm.to(torch_device)
ldm.set_progress_bar_config(disable=None)
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
image = ldm(image=init_image, generator=generator, num_inference_steps=20, output_type="numpy").images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.7418, 0.7472, 0.7424, 0.7422, 0.7463, 0.726, 0.7382, 0.7248, 0.6828])
expected_slice = np.array([0.7644, 0.7679, 0.7642, 0.7633, 0.7666, 0.7560, 0.7425, 0.7257, 0.6907])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

View File

@ -96,6 +96,7 @@ class LDMPipelineFastTests(unittest.TestCase):
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172])
tolerance = 1e-2 if torch_device != "mps" else 3e-2
assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < tolerance
@ -116,4 +117,5 @@ class LDMPipelineIntegrationTests(unittest.TestCase):
assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447])
tolerance = 1e-2 if torch_device != "mps" else 3e-2
assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance

View File

@ -205,7 +205,7 @@ class PaintByExamplePipelineIntegrationTests(unittest.TestCase):
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device=torch_device).manual_seed(321)
generator = torch.manual_seed(321)
output = pipe(
image=init_image,
mask_image=mask_image,
@ -221,7 +221,6 @@ class PaintByExamplePipelineIntegrationTests(unittest.TestCase):
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array(
[0.47455794, 0.47086594, 0.47683704, 0.51024145, 0.5064255, 0.5123164, 0.532502, 0.5328063, 0.5428694]
)
expected_slice = np.array([0.4834, 0.4811, 0.4874, 0.5122, 0.5081, 0.5144, 0.5291, 0.5290, 0.5374])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

View File

@ -59,6 +59,7 @@ class PNDMPipelineFastTests(unittest.TestCase):
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@ -82,4 +83,5 @@ class PNDMPipelineIntegrationTests(unittest.TestCase):
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

View File

@ -81,6 +81,7 @@ class RepaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([1.0000, 0.5426, 0.5497, 0.2200, 1.0000, 1.0000, 0.5623, 1.0000, 0.6274])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
@ -113,7 +114,7 @@ class RepaintPipelineNightlyTests(unittest.TestCase):
repaint.set_progress_bar_config(disable=None)
repaint.enable_attention_slicing()
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
output = repaint(
original_image,
mask_image,

View File

@ -61,6 +61,7 @@ class ScoreSdeVeipelineFastTests(unittest.TestCase):
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@ -86,4 +87,5 @@ class ScoreSdeVePipelineIntegrationTests(unittest.TestCase):
assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

View File

@ -182,7 +182,7 @@ class CycleDiffusionPipelineIntegrationTests(unittest.TestCase):
source_prompt = "A black colored car"
prompt = "A blue colored car"
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
output = pipe(
prompt=prompt,
source_prompt=source_prompt,
@ -221,7 +221,7 @@ class CycleDiffusionPipelineIntegrationTests(unittest.TestCase):
source_prompt = "A black colored car"
prompt = "A blue colored car"
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
output = pipe(
prompt=prompt,
source_prompt=source_prompt,

View File

@ -60,6 +60,7 @@ class OnnxStableDiffusionPipelineFastTests(OnnxPipelineTesterMixin, unittest.Tes
assert image.shape == (1, 128, 128, 3)
expected_slice = np.array([0.65072, 0.58492, 0.48219, 0.55521, 0.53180, 0.55939, 0.50697, 0.39800, 0.46455])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_pipeline_pndm(self):
@ -73,6 +74,7 @@ class OnnxStableDiffusionPipelineFastTests(OnnxPipelineTesterMixin, unittest.Tes
assert image.shape == (1, 128, 128, 3)
expected_slice = np.array([0.65863, 0.59425, 0.49326, 0.56313, 0.53875, 0.56627, 0.51065, 0.39777, 0.46330])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_pipeline_lms(self):
@ -86,6 +88,7 @@ class OnnxStableDiffusionPipelineFastTests(OnnxPipelineTesterMixin, unittest.Tes
assert image.shape == (1, 128, 128, 3)
expected_slice = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_pipeline_euler(self):
@ -99,6 +102,7 @@ class OnnxStableDiffusionPipelineFastTests(OnnxPipelineTesterMixin, unittest.Tes
assert image.shape == (1, 128, 128, 3)
expected_slice = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_pipeline_euler_ancestral(self):
@ -112,6 +116,7 @@ class OnnxStableDiffusionPipelineFastTests(OnnxPipelineTesterMixin, unittest.Tes
assert image.shape == (1, 128, 128, 3)
expected_slice = np.array([0.53817, 0.60812, 0.47384, 0.49530, 0.51894, 0.49814, 0.47984, 0.38958, 0.44271])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_pipeline_dpm_multistep(self):
@ -125,6 +130,7 @@ class OnnxStableDiffusionPipelineFastTests(OnnxPipelineTesterMixin, unittest.Tes
assert image.shape == (1, 128, 128, 3)
expected_slice = np.array([0.53895, 0.60808, 0.47933, 0.49608, 0.51886, 0.49950, 0.48053, 0.38957, 0.44200])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
@ -169,6 +175,7 @@ class OnnxStableDiffusionPipelineIntegrationTests(unittest.TestCase):
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_inference_ddim(self):
@ -194,6 +201,7 @@ class OnnxStableDiffusionPipelineIntegrationTests(unittest.TestCase):
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_inference_k_lms(self):
@ -219,6 +227,7 @@ class OnnxStableDiffusionPipelineIntegrationTests(unittest.TestCase):
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_intermediate_state(self):
@ -234,6 +243,7 @@ class OnnxStableDiffusionPipelineIntegrationTests(unittest.TestCase):
expected_slice = np.array(
[-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
elif step == 5:
assert latents.shape == (1, 4, 64, 64)
@ -241,6 +251,7 @@ class OnnxStableDiffusionPipelineIntegrationTests(unittest.TestCase):
expected_slice = np.array(
[-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
test_callback_fn.has_been_called = False

View File

@ -82,6 +82,7 @@ class OnnxStableDiffusionImg2ImgPipelineFastTests(OnnxPipelineTesterMixin, unitt
assert image.shape == (1, 128, 128, 3)
expected_slice = np.array([0.61710, 0.53390, 0.49310, 0.55622, 0.50982, 0.58240, 0.50716, 0.38629, 0.46856])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def test_pipeline_lms(self):
@ -98,6 +99,7 @@ class OnnxStableDiffusionImg2ImgPipelineFastTests(OnnxPipelineTesterMixin, unitt
assert image.shape == (1, 128, 128, 3)
expected_slice = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def test_pipeline_euler(self):
@ -111,6 +113,7 @@ class OnnxStableDiffusionImg2ImgPipelineFastTests(OnnxPipelineTesterMixin, unitt
assert image.shape == (1, 128, 128, 3)
expected_slice = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def test_pipeline_euler_ancestral(self):
@ -124,6 +127,7 @@ class OnnxStableDiffusionImg2ImgPipelineFastTests(OnnxPipelineTesterMixin, unitt
assert image.shape == (1, 128, 128, 3)
expected_slice = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def test_pipeline_dpm_multistep(self):
@ -137,6 +141,7 @@ class OnnxStableDiffusionImg2ImgPipelineFastTests(OnnxPipelineTesterMixin, unitt
assert image.shape == (1, 128, 128, 3)
expected_slice = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
@ -195,6 +200,7 @@ class OnnxStableDiffusionImg2ImgPipelineIntegrationTests(unittest.TestCase):
assert images.shape == (1, 512, 768, 3)
expected_slice = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019])
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
def test_inference_k_lms(self):
@ -235,4 +241,5 @@ class OnnxStableDiffusionImg2ImgPipelineIntegrationTests(unittest.TestCase):
assert images.shape == (1, 512, 768, 3)
expected_slice = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431])
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2

View File

@ -94,6 +94,7 @@ class OnnxStableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase):
assert images.shape == (1, 512, 512, 3)
expected_slice = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_inference_k_lms(self):
@ -136,4 +137,5 @@ class OnnxStableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase):
assert images.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3

View File

@ -244,6 +244,7 @@ class StableDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.5094, 0.5674, 0.4667, 0.5125, 0.5696, 0.4674, 0.5277, 0.4964, 0.4945])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_no_safety_checker(self):
@ -295,6 +296,7 @@ class StableDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
0.5042197108268738,
]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_k_euler_ancestral(self):
@ -325,6 +327,7 @@ class StableDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
0.504422664642334,
]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_k_euler(self):
@ -355,6 +358,7 @@ class StableDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
0.5042197108268738,
]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_vae_slicing(self):
@ -409,6 +413,7 @@ class StableDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
0.4899061322212219,
]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_num_images_per_prompt(self):
@ -519,8 +524,8 @@ class StableDiffusionPipelineSlowTests(unittest.TestCase):
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, dtype=torch.float32, seed=0):
generator = torch.Generator(device=device).manual_seed(seed)
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
inputs = {
@ -657,9 +662,11 @@ class StableDiffusionPipelineSlowTests(unittest.TestCase):
mem_bytes = torch.cuda.max_memory_allocated()
assert mem_bytes > 4e9
# There is a small discrepancy at the image borders vs. a fully batched version.
assert np.abs(image_sliced - image).max() < 4e-3
assert np.abs(image_sliced - image).max() < 1e-2
def test_stable_diffusion_fp16_vs_autocast(self):
# this test makes sure that the original model with autocast
# and the new model with fp16 yield the same result
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
@ -688,14 +695,20 @@ class StableDiffusionPipelineSlowTests(unittest.TestCase):
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([-0.5713, -0.3018, -0.9814, 0.04663, -0.879, 0.76, -1.734, 0.1044, 1.161])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-3
expected_slice = np.array(
[-0.5693, -0.3018, -0.9746, 0.0518, -0.8770, 0.7559, -1.7402, 0.1022, 1.1582]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
elif step == 2:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([-0.1885, -0.3022, -1.012, -0.514, -0.477, 0.6143, -0.9336, 0.6553, 1.453])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-2
expected_slice = np.array(
[-0.1958, -0.2993, -1.0166, -0.5005, -0.4810, 0.6162, -0.9492, 0.6621, 1.4492]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
callback_fn.has_been_called = False
@ -750,8 +763,8 @@ class StableDiffusionPipelineNightlyTests(unittest.TestCase):
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, dtype=torch.float32, seed=0):
generator = torch.Generator(device=device).manual_seed(seed)
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
inputs = {

View File

@ -117,6 +117,7 @@ class StableDiffusionImageVariationPipelineFastTests(PipelineTesterMixin, unitte
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.5167, 0.5746, 0.4835, 0.4914, 0.5605, 0.4691, 0.5201, 0.4898, 0.4958])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_img_variation_multiple_images(self):
@ -136,6 +137,7 @@ class StableDiffusionImageVariationPipelineFastTests(PipelineTesterMixin, unitte
assert image.shape == (2, 64, 64, 3)
expected_slice = np.array([0.6568, 0.5470, 0.5684, 0.5444, 0.5945, 0.6221, 0.5508, 0.5531, 0.5263])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_img_variation_num_images_per_prompt(self):
@ -183,8 +185,8 @@ class StableDiffusionImageVariationPipelineSlowTests(unittest.TestCase):
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, dtype=torch.float32, seed=0):
generator = torch.Generator(device=device).manual_seed(seed)
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
init_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_imgvar/input_image_vermeer.png"
@ -227,13 +229,17 @@ class StableDiffusionImageVariationPipelineSlowTests(unittest.TestCase):
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([-0.1572, 0.2837, -0.798, -0.1201, -1.304, 0.7754, -2.12, 0.0443, 1.627])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-3
expected_slice = np.array(
[-0.1621, 0.2837, -0.7979, -0.1221, -1.3057, 0.7681, -2.1191, 0.0464, 1.6309]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
elif step == 2:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([0.6143, 1.734, 1.158, -2.145, -1.926, 0.748, -0.7246, 0.994, 1.539])
expected_slice = np.array([0.6299, 1.7500, 1.1992, -2.1582, -1.8994, 0.7334, -0.7090, 1.0137, 1.5273])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
callback_fn.has_been_called = False
@ -282,8 +288,8 @@ class StableDiffusionImageVariationPipelineNightlyTests(unittest.TestCase):
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, dtype=torch.float32, seed=0):
generator = torch.Generator(device=device).manual_seed(seed)
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
init_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_imgvar/input_image_vermeer.png"

View File

@ -119,6 +119,7 @@ class StableDiffusionImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.Test
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.4492, 0.3865, 0.4222, 0.5854, 0.5139, 0.4379, 0.4193, 0.48, 0.4218])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_img2img_negative_prompt(self):
@ -136,6 +137,7 @@ class StableDiffusionImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.Test
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.4065, 0.3783, 0.4050, 0.5266, 0.4781, 0.4252, 0.4203, 0.4692, 0.4365])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_img2img_multiple_init_images(self):
@ -153,6 +155,7 @@ class StableDiffusionImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.Test
assert image.shape == (2, 32, 32, 3)
expected_slice = np.array([0.5144, 0.4447, 0.4735, 0.6676, 0.5526, 0.5454, 0.645, 0.5149, 0.4689])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_img2img_k_lms(self):
@ -171,6 +174,7 @@ class StableDiffusionImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.Test
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.4367, 0.4986, 0.4372, 0.6706, 0.5665, 0.444, 0.5864, 0.6019, 0.5203])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_img2img_num_images_per_prompt(self):
@ -218,8 +222,8 @@ class StableDiffusionImg2ImgPipelineSlowTests(unittest.TestCase):
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, dtype=torch.float32, seed=0):
generator = torch.Generator(device=device).manual_seed(seed)
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
init_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_img2img/sketch-mountains-input.png"
@ -246,7 +250,8 @@ class StableDiffusionImg2ImgPipelineSlowTests(unittest.TestCase):
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 768, 3)
expected_slice = np.array([0.27150, 0.14849, 0.15605, 0.26740, 0.16954, 0.18204, 0.31470, 0.26311, 0.24525])
expected_slice = np.array([0.4300, 0.4662, 0.4930, 0.3990, 0.4307, 0.4525, 0.3719, 0.4064, 0.3923])
assert np.abs(expected_slice - image_slice).max() < 1e-3
def test_stable_diffusion_img2img_k_lms(self):
@ -261,7 +266,8 @@ class StableDiffusionImg2ImgPipelineSlowTests(unittest.TestCase):
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 768, 3)
expected_slice = np.array([0.04890, 0.04862, 0.06422, 0.04655, 0.05108, 0.05307, 0.05926, 0.08759, 0.06852])
expected_slice = np.array([0.0389, 0.0346, 0.0415, 0.0290, 0.0218, 0.0210, 0.0408, 0.0567, 0.0271])
assert np.abs(expected_slice - image_slice).max() < 1e-3
def test_stable_diffusion_img2img_ddim(self):
@ -276,7 +282,8 @@ class StableDiffusionImg2ImgPipelineSlowTests(unittest.TestCase):
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 768, 3)
expected_slice = np.array([0.06069, 0.05703, 0.08054, 0.05797, 0.06286, 0.06234, 0.08438, 0.11151, 0.08068])
expected_slice = np.array([0.0593, 0.0607, 0.0851, 0.0582, 0.0636, 0.0721, 0.0751, 0.0981, 0.0781])
assert np.abs(expected_slice - image_slice).max() < 1e-3
def test_stable_diffusion_img2img_intermediate_state(self):
@ -290,14 +297,16 @@ class StableDiffusionImg2ImgPipelineSlowTests(unittest.TestCase):
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 96)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([0.7705, 0.1045, 0.5, 3.393, 3.723, 4.273, 2.467, 3.486, 1.758])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
expected_slice = np.array([-0.4958, 0.5107, 1.1045, 2.7539, 4.6680, 3.8320, 1.5049, 1.8633, 2.6523])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
elif step == 2:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 96)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([0.765, 0.1047, 0.4973, 3.375, 3.709, 4.258, 2.451, 3.46, 1.755])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
expected_slice = np.array([-0.4956, 0.5078, 1.0918, 2.7520, 4.6484, 3.8125, 1.5146, 1.8633, 2.6367])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
callback_fn.has_been_called = False
@ -352,7 +361,7 @@ class StableDiffusionImg2ImgPipelineSlowTests(unittest.TestCase):
prompt = "A fantasy landscape, trending on artstation"
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
output = pipe(
prompt=prompt,
image=init_image,
@ -366,8 +375,9 @@ class StableDiffusionImg2ImgPipelineSlowTests(unittest.TestCase):
image_slice = image[255:258, 383:386, -1]
assert image.shape == (504, 760, 3)
expected_slice = np.array([0.7124, 0.7105, 0.6993, 0.7140, 0.7106, 0.6945, 0.7198, 0.7172, 0.7031])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
expected_slice = np.array([0.9393, 0.9500, 0.9399, 0.9438, 0.9458, 0.9400, 0.9455, 0.9414, 0.9423])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3
@nightly
@ -378,8 +388,8 @@ class StableDiffusionImg2ImgPipelineNightlyTests(unittest.TestCase):
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, dtype=torch.float32, seed=0):
generator = torch.Generator(device=device).manual_seed(seed)
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
init_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_img2img/sketch-mountains-input.png"

View File

@ -125,6 +125,7 @@ class StableDiffusionInpaintPipelineFastTests(PipelineTesterMixin, unittest.Test
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4723, 0.5731, 0.3939, 0.5441, 0.5922, 0.4392, 0.5059, 0.4651, 0.4474])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_inpaint_image_tensor(self):
@ -172,8 +173,8 @@ class StableDiffusionInpaintPipelineSlowTests(unittest.TestCase):
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, dtype=torch.float32, seed=0):
generator = torch.Generator(device=device).manual_seed(seed)
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
init_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_inpaint/input_bench_image.png"
@ -206,7 +207,8 @@ class StableDiffusionInpaintPipelineSlowTests(unittest.TestCase):
image_slice = image[0, 253:256, 253:256, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.05978, 0.10983, 0.10514, 0.07922, 0.08483, 0.08587, 0.05302, 0.03218, 0.01636])
expected_slice = np.array([0.0427, 0.0460, 0.0483, 0.0460, 0.0584, 0.0521, 0.1549, 0.1695, 0.1794])
assert np.abs(expected_slice - image_slice).max() < 1e-4
def test_stable_diffusion_inpaint_fp16(self):
@ -222,8 +224,9 @@ class StableDiffusionInpaintPipelineSlowTests(unittest.TestCase):
image_slice = image[0, 253:256, 253:256, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.06152, 0.11060, 0.10449, 0.07959, 0.08643, 0.08496, 0.05420, 0.03247, 0.01831])
assert np.abs(expected_slice - image_slice).max() < 1e-2
expected_slice = np.array([0.1443, 0.1218, 0.1587, 0.1594, 0.1411, 0.1284, 0.1370, 0.1506, 0.2339])
assert np.abs(expected_slice - image_slice).max() < 5e-2
def test_stable_diffusion_inpaint_pndm(self):
pipe = StableDiffusionInpaintPipeline.from_pretrained(
@ -239,7 +242,8 @@ class StableDiffusionInpaintPipelineSlowTests(unittest.TestCase):
image_slice = image[0, 253:256, 253:256, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.06892, 0.06994, 0.07905, 0.05366, 0.04709, 0.04890, 0.04107, 0.05083, 0.04180])
expected_slice = np.array([0.0425, 0.0273, 0.0344, 0.1694, 0.1727, 0.1812, 0.3256, 0.3311, 0.3272])
assert np.abs(expected_slice - image_slice).max() < 1e-4
def test_stable_diffusion_inpaint_k_lms(self):
@ -256,7 +260,8 @@ class StableDiffusionInpaintPipelineSlowTests(unittest.TestCase):
image_slice = image[0, 253:256, 253:256, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.23513, 0.22413, 0.29442, 0.24243, 0.26214, 0.30329, 0.26431, 0.25025, 0.25197])
expected_slice = np.array([0.9314, 0.7575, 0.9432, 0.8885, 0.9028, 0.7298, 0.9811, 0.9667, 0.7633])
assert np.abs(expected_slice - image_slice).max() < 1e-4
def test_stable_diffusion_inpaint_with_sequential_cpu_offloading(self):
@ -288,8 +293,8 @@ class StableDiffusionInpaintPipelineNightlyTests(unittest.TestCase):
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, dtype=torch.float32, seed=0):
generator = torch.Generator(device=device).manual_seed(seed)
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
init_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_inpaint/input_bench_image.png"

View File

@ -213,6 +213,7 @@ class StableDiffusionInpaintLegacyPipelineFastTests(unittest.TestCase):
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.4731, 0.5346, 0.4531, 0.6251, 0.5446, 0.4057, 0.5527, 0.5896, 0.5153])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@ -260,6 +261,7 @@ class StableDiffusionInpaintLegacyPipelineFastTests(unittest.TestCase):
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.4765, 0.5339, 0.4541, 0.6240, 0.5439, 0.4055, 0.5503, 0.5891, 0.5150])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_inpaint_legacy_num_images_per_prompt(self):
@ -347,8 +349,8 @@ class StableDiffusionInpaintLegacyPipelineSlowTests(unittest.TestCase):
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, dtype=torch.float32, seed=0):
generator = torch.Generator(device=device).manual_seed(seed)
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
init_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_inpaint/input_bench_image.png"
@ -382,7 +384,8 @@ class StableDiffusionInpaintLegacyPipelineSlowTests(unittest.TestCase):
image_slice = image[0, 253:256, 253:256, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.27200, 0.29103, 0.34405, 0.21418, 0.26317, 0.34281, 0.18033, 0.24911, 0.32028])
expected_slice = np.array([0.5669, 0.6124, 0.6431, 0.4073, 0.4614, 0.5670, 0.1609, 0.3128, 0.4330])
assert np.abs(expected_slice - image_slice).max() < 1e-4
def test_stable_diffusion_inpaint_legacy_k_lms(self):
@ -399,7 +402,8 @@ class StableDiffusionInpaintLegacyPipelineSlowTests(unittest.TestCase):
image_slice = image[0, 253:256, 253:256, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.29014, 0.28882, 0.32835, 0.26502, 0.28182, 0.31162, 0.29297, 0.29534, 0.28214])
expected_slice = np.array([0.4533, 0.4465, 0.4327, 0.4329, 0.4339, 0.4219, 0.4243, 0.4332, 0.4426])
assert np.abs(expected_slice - image_slice).max() < 1e-4
def test_stable_diffusion_inpaint_legacy_intermediate_state(self):
@ -413,13 +417,15 @@ class StableDiffusionInpaintLegacyPipelineSlowTests(unittest.TestCase):
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([-0.103, 1.415, -0.02197, -0.5107, -0.5903, 0.1953, 0.75, 0.3477, -1.356])
expected_slice = np.array([0.5977, 1.5449, 1.0586, -0.3250, 0.7383, -0.0862, 0.4631, -0.2571, -1.1289])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
elif step == 2:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([0.4802, 1.154, 0.628, 0.2319, 0.2593, -0.1455, 0.7075, -0.1617, -0.5615])
expected_slice = np.array([0.5190, 1.1621, 0.6885, 0.2424, 0.3337, -0.1617, 0.6914, -0.1957, -0.5474])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
callback_fn.has_been_called = False
@ -445,8 +451,8 @@ class StableDiffusionInpaintLegacyPipelineNightlyTests(unittest.TestCase):
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, dtype=torch.float32, seed=0):
generator = torch.Generator(device=device).manual_seed(seed)
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
init_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_inpaint/input_bench_image.png"

View File

@ -122,6 +122,7 @@ class StableDiffusionInstructPix2PixPipelineFastTests(PipelineTesterMixin, unitt
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.7318, 0.3723, 0.4662, 0.623, 0.5770, 0.5014, 0.4281, 0.5550, 0.4813])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_pix2pix_negative_prompt(self):
@ -139,6 +140,7 @@ class StableDiffusionInstructPix2PixPipelineFastTests(PipelineTesterMixin, unitt
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.7323, 0.3688, 0.4611, 0.6255, 0.5746, 0.5017, 0.433, 0.5553, 0.4827])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_pix2pix_multiple_init_images(self):
@ -161,6 +163,7 @@ class StableDiffusionInstructPix2PixPipelineFastTests(PipelineTesterMixin, unitt
assert image.shape == (2, 32, 32, 3)
expected_slice = np.array([0.606, 0.5712, 0.5099, 0.598, 0.5805, 0.7205, 0.6793, 0.554, 0.5607])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_pix2pix_euler(self):
@ -182,6 +185,7 @@ class StableDiffusionInstructPix2PixPipelineFastTests(PipelineTesterMixin, unitt
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.726, 0.3902, 0.4868, 0.585, 0.5672, 0.511, 0.3906, 0.551, 0.4846])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_pix2pix_num_images_per_prompt(self):
@ -259,6 +263,7 @@ class StableDiffusionInstructPix2PixPipelineSlowTests(unittest.TestCase):
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555])
assert np.abs(expected_slice - image_slice).max() < 1e-3
def test_stable_diffusion_pix2pix_k_lms(self):
@ -276,6 +281,7 @@ class StableDiffusionInstructPix2PixPipelineSlowTests(unittest.TestCase):
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301])
assert np.abs(expected_slice - image_slice).max() < 1e-3
def test_stable_diffusion_pix2pix_ddim(self):
@ -293,6 +299,7 @@ class StableDiffusionInstructPix2PixPipelineSlowTests(unittest.TestCase):
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753])
assert np.abs(expected_slice - image_slice).max() < 1e-3
def test_stable_diffusion_pix2pix_intermediate_state(self):
@ -306,14 +313,16 @@ class StableDiffusionInstructPix2PixPipelineSlowTests(unittest.TestCase):
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([-0.2388, -0.4673, -0.9775, 1.5127, 1.4414, 0.7778, 0.9907, 0.8472, 0.7788])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-2
expected_slice = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
elif step == 2:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([-0.2568, -0.4648, -0.9639, 1.5137, 1.4609, 0.7603, 0.9795, 0.8403, 0.7949])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-2
expected_slice = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
callback_fn.has_been_called = False
@ -369,5 +378,6 @@ class StableDiffusionInstructPix2PixPipelineSlowTests(unittest.TestCase):
image_slice = image[255:258, 383:386, -1]
assert image.shape == (504, 504, 3)
expected_slice = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.259])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
expected_slice = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3

View File

@ -44,7 +44,7 @@ class StableDiffusionPipelineIntegrationTests(unittest.TestCase):
sd_pipe.set_scheduler("sample_euler")
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=9.0, num_inference_steps=20, output_type="np")
image = output.images
@ -52,7 +52,8 @@ class StableDiffusionPipelineIntegrationTests(unittest.TestCase):
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.8887, 0.915, 0.91, 0.894, 0.909, 0.912, 0.919, 0.925, 0.883])
expected_slice = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_2(self):
@ -63,7 +64,7 @@ class StableDiffusionPipelineIntegrationTests(unittest.TestCase):
sd_pipe.set_scheduler("sample_euler")
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=9.0, num_inference_steps=20, output_type="np")
image = output.images
@ -71,7 +72,6 @@ class StableDiffusionPipelineIntegrationTests(unittest.TestCase):
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array(
[0.826810, 0.81958747, 0.8510199, 0.8376758, 0.83958465, 0.8682068, 0.84370345, 0.85251087, 0.85884345]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
expected_slice = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-1

View File

@ -149,6 +149,7 @@ class StableDiffusion2PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.5099, 0.5677, 0.4671, 0.5128, 0.5697, 0.4676, 0.5277, 0.4964, 0.4946])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_k_lms(self):
@ -165,6 +166,7 @@ class StableDiffusion2PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4717, 0.5376, 0.4568, 0.5225, 0.5734, 0.4797, 0.5467, 0.5074, 0.5043])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_k_euler_ancestral(self):
@ -181,6 +183,7 @@ class StableDiffusion2PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4715, 0.5376, 0.4569, 0.5224, 0.5734, 0.4797, 0.5465, 0.5074, 0.5046])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_k_euler(self):
@ -197,6 +200,7 @@ class StableDiffusion2PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4717, 0.5376, 0.4568, 0.5225, 0.5734, 0.4797, 0.5467, 0.5074, 0.5043])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_long_prompt(self):
@ -246,8 +250,8 @@ class StableDiffusion2PipelineSlowTests(unittest.TestCase):
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, dtype=torch.float32, seed=0):
generator = torch.Generator(device=device).manual_seed(seed)
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
inputs = {
@ -340,14 +344,20 @@ class StableDiffusion2PipelineSlowTests(unittest.TestCase):
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([-0.3857, -0.4507, -1.167, 0.074, -1.108, 0.7183, -1.822, 0.1915, 1.283])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-3
expected_slice = np.array(
[-0.3862, -0.4507, -1.1729, 0.0686, -1.1045, 0.7124, -1.8301, 0.1903, 1.2773]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
elif step == 2:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([0.268, -0.2095, -0.7744, -0.541, -0.79, 0.3926, -0.7754, 0.465, 1.291])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-2
expected_slice = np.array(
[0.2720, -0.1863, -0.7383, -0.5029, -0.7534, 0.3970, -0.7646, 0.4468, 1.2686]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
callback_fn.has_been_called = False
@ -392,8 +402,8 @@ class StableDiffusion2PipelineNightlyTests(unittest.TestCase):
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, dtype=torch.float32, seed=0):
generator = torch.Generator(device=device).manual_seed(seed)
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
inputs = {

View File

@ -289,6 +289,7 @@ class StableDiffusionDepth2ImgPipelineFastTests(PipelineTesterMixin, unittest.Te
expected_slice = np.array([0.6071, 0.5035, 0.4378, 0.5776, 0.5753, 0.4316, 0.4513, 0.5263, 0.4546])
else:
expected_slice = np.array([0.6854, 0.3740, 0.4857, 0.7130, 0.7403, 0.5536, 0.4829, 0.6182, 0.5053])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_depth2img_negative_prompt(self):
@ -309,6 +310,7 @@ class StableDiffusionDepth2ImgPipelineFastTests(PipelineTesterMixin, unittest.Te
expected_slice = np.array([0.5825, 0.5135, 0.4095, 0.5452, 0.6059, 0.4211, 0.3994, 0.5177, 0.4335])
else:
expected_slice = np.array([0.6074, 0.3096, 0.4802, 0.7463, 0.7388, 0.5393, 0.4531, 0.5928, 0.4972])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_depth2img_multiple_init_images(self):
@ -330,6 +332,7 @@ class StableDiffusionDepth2ImgPipelineFastTests(PipelineTesterMixin, unittest.Te
expected_slice = np.array([0.6501, 0.5150, 0.4939, 0.6688, 0.5437, 0.5758, 0.5115, 0.4406, 0.4551])
else:
expected_slice = np.array([0.6681, 0.5023, 0.6611, 0.7605, 0.5724, 0.7959, 0.7240, 0.5871, 0.5383])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_depth2img_num_images_per_prompt(self):
@ -384,6 +387,7 @@ class StableDiffusionDepth2ImgPipelineFastTests(PipelineTesterMixin, unittest.Te
expected_slice = np.array([0.53232, 0.47015, 0.40868, 0.45651, 0.4891, 0.4668, 0.4287, 0.48822, 0.47439])
else:
expected_slice = np.array([0.6853, 0.3740, 0.4856, 0.7130, 0.7402, 0.5535, 0.4828, 0.6182, 0.5053])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
@ -395,7 +399,7 @@ class StableDiffusionDepth2ImgPipelineSlowTests(unittest.TestCase):
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, dtype=torch.float32, seed=0):
def get_inputs(self, device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=device).manual_seed(seed)
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/depth2img/two_cats.png"
@ -419,12 +423,13 @@ class StableDiffusionDepth2ImgPipelineSlowTests(unittest.TestCase):
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs(torch_device)
inputs = self.get_inputs()
image = pipe(**inputs).images
image_slice = image[0, 253:256, 253:256, -1].flatten()
assert image.shape == (1, 480, 640, 3)
expected_slice = np.array([0.75446, 0.74692, 0.75951, 0.81611, 0.80593, 0.79992, 0.90529, 0.87921, 0.86903])
expected_slice = np.array([0.9057, 0.9365, 0.9258, 0.8937, 0.8555, 0.8541, 0.8260, 0.7747, 0.7421])
assert np.abs(expected_slice - image_slice).max() < 1e-4
def test_stable_diffusion_depth2img_pipeline_k_lms(self):
@ -436,12 +441,13 @@ class StableDiffusionDepth2ImgPipelineSlowTests(unittest.TestCase):
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs(torch_device)
inputs = self.get_inputs()
image = pipe(**inputs).images
image_slice = image[0, 253:256, 253:256, -1].flatten()
assert image.shape == (1, 480, 640, 3)
expected_slice = np.array([0.63957, 0.64879, 0.65668, 0.64385, 0.67078, 0.63588, 0.66577, 0.62180, 0.66286])
expected_slice = np.array([0.6363, 0.6274, 0.6309, 0.6370, 0.6226, 0.6286, 0.6213, 0.6453, 0.6306])
assert np.abs(expected_slice - image_slice).max() < 1e-4
def test_stable_diffusion_depth2img_pipeline_ddim(self):
@ -453,12 +459,13 @@ class StableDiffusionDepth2ImgPipelineSlowTests(unittest.TestCase):
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs(torch_device)
inputs = self.get_inputs()
image = pipe(**inputs).images
image_slice = image[0, 253:256, 253:256, -1].flatten()
assert image.shape == (1, 480, 640, 3)
expected_slice = np.array([0.62840, 0.64191, 0.62953, 0.63653, 0.64205, 0.61574, 0.62252, 0.65827, 0.64809])
expected_slice = np.array([0.6424, 0.6524, 0.6249, 0.6041, 0.6634, 0.6420, 0.6522, 0.6555, 0.6436])
assert np.abs(expected_slice - image_slice).max() < 1e-4
def test_stable_diffusion_depth2img_intermediate_state(self):
@ -472,14 +479,20 @@ class StableDiffusionDepth2ImgPipelineSlowTests(unittest.TestCase):
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 60, 80)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([-1.148, -0.2079, -0.622, -2.477, -2.348, 0.3828, -2.055, -1.569, -1.526])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
expected_slice = np.array(
[-0.7168, -1.5137, -0.1418, -2.9219, -2.7266, -2.4414, -2.1035, -3.0078, -1.7051]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
elif step == 2:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 60, 80)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([-1.145, -0.2063, -0.6216, -2.469, -2.344, 0.3794, -2.05, -1.57, -1.521])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
expected_slice = np.array(
[-0.7109, -1.5068, -0.1403, -2.9160, -2.7207, -2.4414, -2.1035, -3.0059, -1.7090]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
callback_fn.has_been_called = False
@ -490,7 +503,7 @@ class StableDiffusionDepth2ImgPipelineSlowTests(unittest.TestCase):
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs(torch_device, dtype=torch.float16)
inputs = self.get_inputs(dtype=torch.float16)
pipe(**inputs, callback=callback_fn, callback_steps=1)
assert callback_fn.has_been_called
assert number_of_steps == 2
@ -508,7 +521,7 @@ class StableDiffusionDepth2ImgPipelineSlowTests(unittest.TestCase):
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
inputs = self.get_inputs(torch_device, dtype=torch.float16)
inputs = self.get_inputs(dtype=torch.float16)
_ = pipe(**inputs)
mem_bytes = torch.cuda.max_memory_allocated()
@ -524,7 +537,7 @@ class StableDiffusionImg2ImgPipelineNightlyTests(unittest.TestCase):
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, dtype=torch.float32, seed=0):
def get_inputs(self, device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=device).manual_seed(seed)
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/depth2img/two_cats.png"
@ -545,7 +558,7 @@ class StableDiffusionImg2ImgPipelineNightlyTests(unittest.TestCase):
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
inputs = self.get_inputs()
image = pipe(**inputs).images[0]
expected_image = load_numpy(
@ -561,7 +574,7 @@ class StableDiffusionImg2ImgPipelineNightlyTests(unittest.TestCase):
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
inputs = self.get_inputs()
image = pipe(**inputs).images[0]
expected_image = load_numpy(
@ -577,7 +590,7 @@ class StableDiffusionImg2ImgPipelineNightlyTests(unittest.TestCase):
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
inputs = self.get_inputs()
image = pipe(**inputs).images[0]
expected_image = load_numpy(
@ -593,7 +606,7 @@ class StableDiffusionImg2ImgPipelineNightlyTests(unittest.TestCase):
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
inputs = self.get_inputs()
inputs["num_inference_steps"] = 30
image = pipe(**inputs).images[0]

View File

@ -158,7 +158,7 @@ class StableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase):
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
output = pipe(
prompt=prompt,
image=init_image,
@ -196,7 +196,7 @@ class StableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase):
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
output = pipe(
prompt=prompt,
image=init_image,
@ -237,7 +237,7 @@ class StableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase):
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
_ = pipe(
prompt=prompt,
image=init_image,

View File

@ -241,7 +241,7 @@ class StableDiffusionUpscalePipelineFastTests(unittest.TestCase):
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
image = sd_pipe(
[prompt],
image=low_res_image,
@ -281,7 +281,7 @@ class StableDiffusionUpscalePipelineIntegrationTests(unittest.TestCase):
prompt = "a cat sitting on a park bench"
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
output = pipe(
prompt=prompt,
image=image,
@ -314,7 +314,7 @@ class StableDiffusionUpscalePipelineIntegrationTests(unittest.TestCase):
prompt = "a cat sitting on a park bench"
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
output = pipe(
prompt=prompt,
image=image,
@ -348,7 +348,7 @@ class StableDiffusionUpscalePipelineIntegrationTests(unittest.TestCase):
prompt = "a cat sitting on a park bench"
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
_ = pipe(
prompt=prompt,
image=image,

View File

@ -194,6 +194,7 @@ class StableDiffusion2VPredictionPipelineFastTests(unittest.TestCase):
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4616, 0.5184, 0.4887, 0.5111, 0.4839, 0.48, 0.5119, 0.5263, 0.4776])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@ -233,7 +234,7 @@ class StableDiffusion2VPredictionPipelineFastTests(unittest.TestCase):
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
image = sd_pipe([prompt], generator=generator, num_inference_steps=2, output_type="np").images
assert image.shape == (1, 64, 64, 3)
@ -255,14 +256,15 @@ class StableDiffusion2VPredictionPipelineIntegrationTests(unittest.TestCase):
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=7.5, num_inference_steps=20, output_type="np")
image = output.images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 768, 768, 3)
expected_slice = np.array([0.0567, 0.057, 0.0416, 0.0463, 0.0433, 0.06, 0.0517, 0.0526, 0.0866])
expected_slice = np.array([0.1868, 0.1922, 0.1527, 0.1921, 0.1908, 0.1624, 0.1779, 0.1652, 0.1734])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_v_pred_upcast_attention(self):
@ -274,15 +276,16 @@ class StableDiffusion2VPredictionPipelineIntegrationTests(unittest.TestCase):
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=7.5, num_inference_steps=20, output_type="np")
image = output.images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 768, 768, 3)
expected_slice = np.array([0.0461, 0.0483, 0.0566, 0.0512, 0.0446, 0.0751, 0.0664, 0.0551, 0.0488])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
expected_slice = np.array([0.4209, 0.4087, 0.4097, 0.4209, 0.3860, 0.4329, 0.4280, 0.4324, 0.4187])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2
def test_stable_diffusion_v_pred_euler(self):
scheduler = EulerDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-2", subfolder="scheduler")
@ -292,7 +295,7 @@ class StableDiffusion2VPredictionPipelineIntegrationTests(unittest.TestCase):
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
output = sd_pipe([prompt], generator=generator, num_inference_steps=5, output_type="numpy")
image = output.images
@ -300,7 +303,8 @@ class StableDiffusion2VPredictionPipelineIntegrationTests(unittest.TestCase):
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 768, 768, 3)
expected_slice = np.array([0.0351, 0.0376, 0.0505, 0.0424, 0.0551, 0.0656, 0.0471, 0.0276, 0.0596])
expected_slice = np.array([0.1781, 0.1695, 0.1661, 0.1705, 0.1588, 0.1699, 0.2005, 0.1589, 0.1677])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_v_pred_dpm(self):
@ -316,14 +320,15 @@ class StableDiffusion2VPredictionPipelineIntegrationTests(unittest.TestCase):
sd_pipe.set_progress_bar_config(disable=None)
prompt = "a photograph of an astronaut riding a horse"
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
image = sd_pipe(
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=5, output_type="numpy"
).images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 768, 768, 3)
expected_slice = np.array([0.2049, 0.2115, 0.2323, 0.2416, 0.256, 0.2484, 0.2517, 0.2358, 0.236])
expected_slice = np.array([0.3303, 0.3184, 0.3291, 0.3300, 0.3256, 0.3113, 0.2965, 0.3134, 0.3192])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_attention_slicing_v_pred(self):
@ -337,12 +342,11 @@ class StableDiffusion2VPredictionPipelineIntegrationTests(unittest.TestCase):
# make attention efficient
pipe.enable_attention_slicing()
generator = torch.Generator(device=torch_device).manual_seed(0)
with torch.autocast(torch_device):
output_chunked = pipe(
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
)
image_chunked = output_chunked.images
generator = torch.manual_seed(0)
output_chunked = pipe(
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
)
image_chunked = output_chunked.images
mem_bytes = torch.cuda.max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
@ -351,12 +355,9 @@ class StableDiffusion2VPredictionPipelineIntegrationTests(unittest.TestCase):
# disable slicing
pipe.disable_attention_slicing()
generator = torch.Generator(device=torch_device).manual_seed(0)
with torch.autocast(torch_device):
output = pipe(
[prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
)
image = output.images
generator = torch.manual_seed(0)
output = pipe([prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy")
image = output.images
# make sure that more than 5.5 GB is allocated
mem_bytes = torch.cuda.max_memory_allocated()
@ -376,12 +377,12 @@ class StableDiffusion2VPredictionPipelineIntegrationTests(unittest.TestCase):
prompt = "astronaut riding a horse"
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
output = pipe(prompt=prompt, guidance_scale=7.5, generator=generator, output_type="np")
image = output.images[0]
assert image.shape == (768, 768, 3)
assert np.abs(expected_image - image).max() < 5e-3
assert np.abs(expected_image - image).max() < 7.5e-2
def test_stable_diffusion_text2img_pipeline_v_pred_fp16(self):
expected_image = load_numpy(
@ -395,12 +396,12 @@ class StableDiffusion2VPredictionPipelineIntegrationTests(unittest.TestCase):
prompt = "astronaut riding a horse"
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
output = pipe(prompt=prompt, guidance_scale=7.5, generator=generator, output_type="np")
image = output.images[0]
assert image.shape == (768, 768, 3)
assert np.abs(expected_image - image).max() < 5e-1
assert np.abs(expected_image - image).max() < 7.5e-1
def test_stable_diffusion_text2img_intermediate_state_v_pred(self):
number_of_steps = 0
@ -413,18 +414,16 @@ class StableDiffusion2VPredictionPipelineIntegrationTests(unittest.TestCase):
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 96, 96)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array(
[-0.2543, -1.2755, 0.4261, -0.9555, -1.173, -0.5892, 2.4159, 0.1554, -1.2098]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-3
expected_slice = np.array([0.7749, 0.0325, 0.5088, 0.1619, 0.3372, 0.3667, -0.5186, 0.6860, 1.4326])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
elif step == 19:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 96, 96)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array(
[-0.9572, -0.967, -0.6152, 0.0894, -0.699, -0.2344, 1.5465, -0.0357, -0.1141]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-2
expected_slice = np.array([1.3887, 1.0273, 1.7266, 0.0726, 0.6611, 0.1598, -1.0547, 0.1522, 0.0227])
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
test_callback_fn.has_been_called = False
@ -435,16 +434,15 @@ class StableDiffusion2VPredictionPipelineIntegrationTests(unittest.TestCase):
prompt = "Andromeda galaxy in a bottle"
generator = torch.Generator(device=torch_device).manual_seed(0)
with torch.autocast(torch_device):
pipe(
prompt=prompt,
num_inference_steps=20,
guidance_scale=7.5,
generator=generator,
callback=test_callback_fn,
callback_steps=1,
)
generator = torch.manual_seed(0)
pipe(
prompt=prompt,
num_inference_steps=20,
guidance_scale=7.5,
generator=generator,
callback=test_callback_fn,
callback_steps=1,
)
assert test_callback_fn.has_been_called
assert number_of_steps == 20
@ -475,7 +473,7 @@ class StableDiffusion2VPredictionPipelineIntegrationTests(unittest.TestCase):
pipeline.enable_attention_slicing(1)
pipeline.enable_sequential_cpu_offload()
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
_ = pipeline(prompt, generator=generator, num_inference_steps=5)
mem_bytes = torch.cuda.max_memory_allocated()

View File

@ -23,7 +23,7 @@ import torch
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, slow, torch_device
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
@ -201,6 +201,7 @@ class SafeDiffusionPipelineFastTests(unittest.TestCase):
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.5095, 0.5674, 0.4668, 0.5126, 0.5697, 0.4675, 0.5278, 0.4964, 0.4945])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@ -253,13 +254,12 @@ class SafeDiffusionPipelineFastTests(unittest.TestCase):
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
image = sd_pipe([prompt], generator=generator, num_inference_steps=2, output_type="np").images
image = sd_pipe([prompt], num_inference_steps=2, output_type="np").images
assert image.shape == (1, 64, 64, 3)
@slow
@nightly
@require_torch_gpu
class SafeDiffusionPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
@ -284,7 +284,7 @@ class SafeDiffusionPipelineIntegrationTests(unittest.TestCase):
guidance_scale = 7
# without safety guidance (sld_guidance_scale = 0)
generator = torch.Generator(device=torch_device).manual_seed(seed)
generator = torch.manual_seed(seed)
output = sd_pipe(
[prompt],
generator=generator,
@ -301,10 +301,11 @@ class SafeDiffusionPipelineIntegrationTests(unittest.TestCase):
expected_slice = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
# without safety guidance (strong configuration)
generator = torch.Generator(device=torch_device).manual_seed(seed)
generator = torch.manual_seed(seed)
output = sd_pipe(
[prompt],
generator=generator,
@ -325,6 +326,7 @@ class SafeDiffusionPipelineIntegrationTests(unittest.TestCase):
expected_slice = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_nudity_safe_stable_diffusion(self):
@ -337,7 +339,7 @@ class SafeDiffusionPipelineIntegrationTests(unittest.TestCase):
seed = 2734971755
guidance_scale = 7
generator = torch.Generator(device=torch_device).manual_seed(seed)
generator = torch.manual_seed(seed)
output = sd_pipe(
[prompt],
generator=generator,
@ -354,9 +356,10 @@ class SafeDiffusionPipelineIntegrationTests(unittest.TestCase):
expected_slice = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
generator = torch.Generator(device=torch_device).manual_seed(seed)
generator = torch.manual_seed(seed)
output = sd_pipe(
[prompt],
generator=generator,
@ -377,6 +380,7 @@ class SafeDiffusionPipelineIntegrationTests(unittest.TestCase):
expected_slice = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_nudity_safetychecker_safe_stable_diffusion(self):
@ -391,7 +395,7 @@ class SafeDiffusionPipelineIntegrationTests(unittest.TestCase):
seed = 1044355234
guidance_scale = 12
generator = torch.Generator(device=torch_device).manual_seed(seed)
generator = torch.manual_seed(seed)
output = sd_pipe(
[prompt],
generator=generator,
@ -408,9 +412,10 @@ class SafeDiffusionPipelineIntegrationTests(unittest.TestCase):
expected_slice = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-7
generator = torch.Generator(device=torch_device).manual_seed(seed)
generator = torch.manual_seed(seed)
output = sd_pipe(
[prompt],
generator=generator,
@ -430,4 +435,5 @@ class SafeDiffusionPipelineIntegrationTests(unittest.TestCase):
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561])
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

View File

@ -460,11 +460,9 @@ class UnCLIPPipelineIntegrationTests(unittest.TestCase):
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
generator = torch.Generator(device=torch_device).manual_seed(0)
_ = pipe(
"horse",
num_images_per_prompt=1,
generator=generator,
prior_num_inference_steps=2,
decoder_num_inference_steps=2,
super_res_num_inference_steps=2,

View File

@ -51,7 +51,7 @@ class VersatileDiffusionDualGuidedPipelineIntegrationTests(unittest.TestCase):
"https://raw.githubusercontent.com/SHI-Labs/Versatile-Diffusion/master/assets/benz.jpg"
)
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
image = pipe(
prompt="first prompt",
image=second_prompt,
@ -92,7 +92,7 @@ class VersatileDiffusionDualGuidedPipelineIntegrationTests(unittest.TestCase):
second_prompt = load_image(
"https://raw.githubusercontent.com/SHI-Labs/Versatile-Diffusion/master/assets/benz.jpg"
)
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
image = pipe(
prompt=first_prompt,
image=second_prompt,
@ -106,5 +106,6 @@ class VersatileDiffusionDualGuidedPipelineIntegrationTests(unittest.TestCase):
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.014, 0.0112, 0.0136, 0.0145, 0.0107, 0.0113, 0.0272, 0.0215, 0.0216])
expected_slice = np.array([0.0787, 0.0849, 0.0826, 0.0812, 0.0807, 0.0795, 0.0818, 0.0798, 0.0779])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

View File

@ -40,7 +40,7 @@ class VersatileDiffusionImageVariationPipelineIntegrationTests(unittest.TestCase
image_prompt = load_image(
"https://raw.githubusercontent.com/SHI-Labs/Versatile-Diffusion/master/assets/benz.jpg"
)
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
image = pipe(
image=image_prompt,
generator=generator,
@ -52,5 +52,6 @@ class VersatileDiffusionImageVariationPipelineIntegrationTests(unittest.TestCase
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.1205, 0.1914, 0.2289, 0.0883, 0.1595, 0.1683, 0.0703, 0.1493, 0.1298])
expected_slice = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

View File

@ -49,7 +49,7 @@ class VersatileDiffusionMegaPipelineIntegrationTests(unittest.TestCase):
"https://raw.githubusercontent.com/SHI-Labs/Versatile-Diffusion/master/assets/benz.jpg"
)
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
image = pipe.dual_guided(
prompt="first prompt",
image=prompt_image,
@ -88,7 +88,7 @@ class VersatileDiffusionMegaPipelineIntegrationTests(unittest.TestCase):
init_image = load_image(
"https://raw.githubusercontent.com/SHI-Labs/Versatile-Diffusion/master/assets/benz.jpg"
)
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
image = pipe.dual_guided(
prompt=prompt,
image=init_image,
@ -102,11 +102,12 @@ class VersatileDiffusionMegaPipelineIntegrationTests(unittest.TestCase):
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0081, 0.0032, 0.0002, 0.0056, 0.0027, 0.0000, 0.0051, 0.0020, 0.0007])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2
expected_slice = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
prompt = "A painting of a squirrel eating a burger "
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
image = pipe.text_to_image(
prompt=prompt, generator=generator, guidance_scale=7.5, num_inference_steps=50, output_type="numpy"
).images
@ -114,13 +115,15 @@ class VersatileDiffusionMegaPipelineIntegrationTests(unittest.TestCase):
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0408, 0.0181, 0.0, 0.0388, 0.0046, 0.0461, 0.0411, 0.0, 0.0222])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2
expected_slice = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
image = pipe.image_variation(init_image, generator=generator, output_type="numpy").images
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.3403, 0.1809, 0.0938, 0.3855, 0.2393, 0.1243, 0.4028, 0.3110, 0.1799])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2
expected_slice = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1

View File

@ -48,7 +48,7 @@ class VersatileDiffusionTextToImagePipelineIntegrationTests(unittest.TestCase):
pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger "
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
image = pipe(
prompt=prompt, generator=generator, guidance_scale=7.5, num_inference_steps=2, output_type="numpy"
).images
@ -72,7 +72,7 @@ class VersatileDiffusionTextToImagePipelineIntegrationTests(unittest.TestCase):
pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger "
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
image = pipe(
prompt=prompt, generator=generator, guidance_scale=7.5, num_inference_steps=50, output_type="numpy"
).images
@ -80,5 +80,6 @@ class VersatileDiffusionTextToImagePipelineIntegrationTests(unittest.TestCase):
image_slice = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0408, 0.0181, 0.0, 0.0388, 0.0046, 0.0461, 0.0411, 0.0, 0.0222])
expected_slice = np.array([0.3493, 0.3757, 0.4093, 0.4495, 0.4233, 0.4102, 0.4507, 0.4756, 0.4787])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

View File

@ -212,6 +212,8 @@ class VQDiffusionPipelineIntegrationTests(unittest.TestCase):
pipeline = pipeline.to(torch_device)
pipeline.set_progress_bar_config(disable=None)
# requires GPU generator for gumbel softmax
# don't use GPU generator in tests though
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipeline(
"teddy bear playing in the pool",

View File

@ -86,19 +86,11 @@ class DownloadTests(unittest.TestCase):
pipe = pipe.to(torch_device)
pipe_2 = pipe_2.to(torch_device)
if torch_device == "mps":
# device type MPS is not supported for torch.Generator() api.
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
if torch_device == "mps":
# device type MPS is not supported for torch.Generator() api.
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
assert np.max(np.abs(out - out_2)) < 1e-3
@ -125,20 +117,12 @@ class DownloadTests(unittest.TestCase):
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
pipe = pipe.to(torch_device)
if torch_device == "mps":
# device type MPS is not supported for torch.Generator() api.
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
pipe_2 = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
pipe_2 = pipe_2.to(torch_device)
if torch_device == "mps":
# device type MPS is not supported for torch.Generator() api.
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
assert np.max(np.abs(out - out_2)) < 1e-3
@ -149,11 +133,7 @@ class DownloadTests(unittest.TestCase):
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
pipe = pipe.to(torch_device)
if torch_device == "mps":
# device type MPS is not supported for torch.Generator() api.
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
with tempfile.TemporaryDirectory() as tmpdirname:
@ -161,11 +141,7 @@ class DownloadTests(unittest.TestCase):
pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None)
pipe_2 = pipe_2.to(torch_device)
if torch_device == "mps":
# device type MPS is not supported for torch.Generator() api.
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
@ -175,11 +151,8 @@ class DownloadTests(unittest.TestCase):
prompt = "hello"
pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
pipe = pipe.to(torch_device)
if torch_device == "mps":
# device type MPS is not supported for torch.Generator() api.
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
with tempfile.TemporaryDirectory() as tmpdirname:
@ -187,11 +160,7 @@ class DownloadTests(unittest.TestCase):
pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname)
pipe_2 = pipe_2.to(torch_device)
if torch_device == "mps":
# device type MPS is not supported for torch.Generator() api.
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
@ -401,12 +370,7 @@ class PipelineFastTests(unittest.TestCase):
scheduler = scheduler_fn()
pipeline = pipeline_fn(unet, scheduler).to(torch_device)
# Device type MPS is not supported for torch.Generator() api.
if torch_device == "mps":
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
out_image = pipeline(
generator=generator,
num_inference_steps=2,
@ -442,12 +406,7 @@ class PipelineFastTests(unittest.TestCase):
prompt = "A painting of a squirrel eating a burger"
# Device type MPS is not supported for torch.Generator() api.
if torch_device == "mps":
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
image_inpaint = inpaint(
[prompt],
generator=generator,
@ -798,7 +757,7 @@ class PipelineSlowTests(unittest.TestCase):
generator = torch.Generator(device=torch_device).manual_seed(0)
image = ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images
generator = generator.manual_seed(0)
generator = torch.Generator(device=torch_device).manual_seed(0)
new_image = new_ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images
assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"
@ -819,7 +778,7 @@ class PipelineSlowTests(unittest.TestCase):
generator = torch.Generator(device=torch_device).manual_seed(0)
image = ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images
generator = generator.manual_seed(0)
generator = torch.Generator(device=torch_device).manual_seed(0)
new_image = ddpm_from_hub(generator=generator, num_inference_steps=5, output_type="numpy").images
assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"
@ -842,7 +801,7 @@ class PipelineSlowTests(unittest.TestCase):
generator = torch.Generator(device=torch_device).manual_seed(0)
image = ddpm_from_hub_custom_model(generator=generator, num_inference_steps=5, output_type="numpy").images
generator = generator.manual_seed(0)
generator = torch.Generator(device=torch_device).manual_seed(0)
new_image = ddpm_from_hub(generator=generator, num_inference_steps=5, output_type="numpy").images
assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"
@ -855,18 +814,17 @@ class PipelineSlowTests(unittest.TestCase):
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device=torch_device).manual_seed(0)
images = pipe(generator=generator, output_type="numpy").images
images = pipe(output_type="numpy").images
assert images.shape == (1, 32, 32, 3)
assert isinstance(images, np.ndarray)
images = pipe(generator=generator, output_type="pil", num_inference_steps=4).images
images = pipe(output_type="pil", num_inference_steps=4).images
assert isinstance(images, list)
assert len(images) == 1
assert isinstance(images[0], PIL.Image.Image)
# use PIL by default
images = pipe(generator=generator, num_inference_steps=4).images
images = pipe(num_inference_steps=4).images
assert isinstance(images, list)
assert isinstance(images[0], PIL.Image.Image)

View File

@ -288,11 +288,11 @@ class SchedulerCommonTest(unittest.TestCase):
# Set the seed before step() as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.Generator().manual_seed(0)
kwargs["generator"] = torch.manual_seed(0)
output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.Generator().manual_seed(0)
kwargs["generator"] = torch.manual_seed(0)
new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
@ -330,11 +330,11 @@ class SchedulerCommonTest(unittest.TestCase):
kwargs["num_inference_steps"] = num_inference_steps
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.Generator().manual_seed(0)
kwargs["generator"] = torch.manual_seed(0)
output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.Generator().manual_seed(0)
kwargs["generator"] = torch.manual_seed(0)
new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
@ -372,11 +372,11 @@ class SchedulerCommonTest(unittest.TestCase):
kwargs["num_inference_steps"] = num_inference_steps
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.Generator().manual_seed(0)
kwargs["generator"] = torch.manual_seed(0)
output = scheduler.step(residual, timestep, sample, **kwargs).prev_sample
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.Generator().manual_seed(0)
kwargs["generator"] = torch.manual_seed(0)
new_output = new_scheduler.step(residual, timestep, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
@ -510,7 +510,7 @@ class SchedulerCommonTest(unittest.TestCase):
# Set the seed before state as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.Generator().manual_seed(0)
kwargs["generator"] = torch.manual_seed(0)
outputs_dict = scheduler.step(residual, timestep, sample, **kwargs)
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
@ -520,7 +520,7 @@ class SchedulerCommonTest(unittest.TestCase):
# Set the seed before state as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.Generator().manual_seed(0)
kwargs["generator"] = torch.manual_seed(0)
outputs_tuple = scheduler.step(residual, timestep, sample, return_dict=False, **kwargs)
recursive_check(outputs_tuple, outputs_dict)
@ -664,12 +664,12 @@ class DDPMSchedulerTest(SchedulerCommonTest):
kwargs = {}
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.Generator().manual_seed(0)
kwargs["generator"] = torch.manual_seed(0)
output = scheduler.step(residual, time_step, sample, predict_epsilon=False, **kwargs).prev_sample
kwargs = {}
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.Generator().manual_seed(0)
kwargs["generator"] = torch.manual_seed(0)
output_eps = scheduler_eps.step(residual, time_step, sample, predict_epsilon=False, **kwargs).prev_sample
assert (output - output_eps).abs().sum() < 1e-5
@ -1822,11 +1822,7 @@ class EulerDiscreteSchedulerTest(SchedulerCommonTest):
scheduler.set_timesteps(self.num_inference_steps)
if torch_device == "mps":
# device type MPS is not supported for torch.Generator() api.
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
model = self.dummy_model()
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
@ -1853,11 +1849,7 @@ class EulerDiscreteSchedulerTest(SchedulerCommonTest):
scheduler.set_timesteps(self.num_inference_steps)
if torch_device == "mps":
# device type MPS is not supported for torch.Generator() api.
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
model = self.dummy_model()
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
@ -1884,11 +1876,7 @@ class EulerDiscreteSchedulerTest(SchedulerCommonTest):
scheduler.set_timesteps(self.num_inference_steps, device=torch_device)
if torch_device == "mps":
# device type MPS is not supported for torch.Generator() api.
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
model = self.dummy_model()
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
@ -1947,11 +1935,7 @@ class EulerAncestralDiscreteSchedulerTest(SchedulerCommonTest):
scheduler.set_timesteps(self.num_inference_steps)
if torch_device == "mps":
# device type MPS is not supported for torch.Generator() api.
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
model = self.dummy_model()
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
@ -1968,13 +1952,8 @@ class EulerAncestralDiscreteSchedulerTest(SchedulerCommonTest):
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 152.3192) < 1e-2
assert abs(result_mean.item() - 0.1983) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 144.8084) < 1e-2
assert abs(result_mean.item() - 0.18855) < 1e-3
assert abs(result_sum.item() - 152.3192) < 1e-2
assert abs(result_mean.item() - 0.1983) < 1e-3
def test_full_loop_with_v_prediction(self):
scheduler_class = self.scheduler_classes[0]
@ -1983,11 +1962,7 @@ class EulerAncestralDiscreteSchedulerTest(SchedulerCommonTest):
scheduler.set_timesteps(self.num_inference_steps)
if torch_device == "mps":
# device type MPS is not supported for torch.Generator() api.
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
model = self.dummy_model()
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
@ -2004,13 +1979,8 @@ class EulerAncestralDiscreteSchedulerTest(SchedulerCommonTest):
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 108.4439) < 1e-2
assert abs(result_mean.item() - 0.1412) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 102.5807) < 1e-2
assert abs(result_mean.item() - 0.1335) < 1e-3
assert abs(result_sum.item() - 108.4439) < 1e-2
assert abs(result_mean.item() - 0.1412) < 1e-3
def test_full_loop_device(self):
scheduler_class = self.scheduler_classes[0]
@ -2018,12 +1988,7 @@ class EulerAncestralDiscreteSchedulerTest(SchedulerCommonTest):
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(self.num_inference_steps, device=torch_device)
if torch_device == "mps":
# device type MPS is not supported for torch.Generator() api.
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
model = self.dummy_model()
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
@ -2040,17 +2005,8 @@ class EulerAncestralDiscreteSchedulerTest(SchedulerCommonTest):
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
if str(torch_device).startswith("cpu"):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 152.3192) < 1e-2
assert abs(result_mean.item() - 0.1983) < 1e-3
elif str(torch_device).startswith("mps"):
# Larger tolerance on mps
assert abs(result_mean.item() - 0.1983) < 1e-2
else:
# CUDA
assert abs(result_sum.item() - 144.8084) < 1e-2
assert abs(result_mean.item() - 0.18855) < 1e-3
assert abs(result_sum.item() - 152.3192) < 1e-2
assert abs(result_mean.item() - 0.1983) < 1e-3
class IPNDMSchedulerTest(SchedulerCommonTest):
@ -2745,7 +2701,7 @@ class KDPM2AncestralDiscreteSchedulerTest(SchedulerCommonTest):
scheduler.set_timesteps(self.num_inference_steps)
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
model = self.dummy_model()
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
@ -2762,13 +2718,8 @@ class KDPM2AncestralDiscreteSchedulerTest(SchedulerCommonTest):
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 13849.3945) < 1e-2
assert abs(result_mean.item() - 18.0331) < 5e-3
else:
# CUDA
assert abs(result_sum.item() - 13913.0449) < 1e-2
assert abs(result_mean.item() - 18.1159) < 5e-3
assert abs(result_sum.item() - 13849.3877) < 1e-2
assert abs(result_mean.item() - 18.0331) < 5e-3
def test_prediction_type(self):
for prediction_type in ["epsilon", "v_prediction"]:
@ -2787,11 +2738,7 @@ class KDPM2AncestralDiscreteSchedulerTest(SchedulerCommonTest):
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
sample = sample.to(torch_device)
if torch_device == "mps":
# device type MPS is not supported for torch.Generator() api.
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
for i, t in enumerate(scheduler.timesteps):
sample = scheduler.scale_model_input(sample, t)
@ -2804,13 +2751,8 @@ class KDPM2AncestralDiscreteSchedulerTest(SchedulerCommonTest):
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 328.9970) < 1e-2
assert abs(result_mean.item() - 0.4284) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 327.8027) < 1e-2
assert abs(result_mean.item() - 0.4268) < 1e-3
assert abs(result_sum.item() - 328.9970) < 1e-2
assert abs(result_mean.item() - 0.4284) < 1e-3
def test_full_loop_device(self):
if torch_device == "mps":
@ -2820,12 +2762,7 @@ class KDPM2AncestralDiscreteSchedulerTest(SchedulerCommonTest):
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(self.num_inference_steps, device=torch_device)
if torch_device == "mps":
# device type MPS is not supported for torch.Generator() api.
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
generator = torch.manual_seed(0)
model = self.dummy_model()
sample = self.dummy_sample_deter.to(torch_device) * scheduler.init_noise_sigma
@ -2841,13 +2778,8 @@ class KDPM2AncestralDiscreteSchedulerTest(SchedulerCommonTest):
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
if str(torch_device).startswith("cpu"):
assert abs(result_sum.item() - 13849.3945) < 1e-2
assert abs(result_mean.item() - 18.0331) < 5e-3
else:
# CUDA
assert abs(result_sum.item() - 13913.0332) < 1e-1
assert abs(result_mean.item() - 18.1159) < 1e-3
assert abs(result_sum.item() - 13849.3818) < 1e-1
assert abs(result_mean.item() - 18.0331) < 1e-3
# UnCLIPScheduler is a modified DDPMScheduler with a subset of the configuration.

View File

@ -0,0 +1,89 @@
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from collections import defaultdict
def overwrite_file(file, class_name, test_name, correct_line, done_test):
done_test[file] += 1
with open(file, "r") as f:
lines = f.readlines()
class_regex = f"class {class_name}("
test_regex = f"{4 * ' '}def {test_name}("
line_begin_regex = f"{8 * ' '}{correct_line.split()[0]}"
another_line_begin_regex = f"{16 * ' '}{correct_line.split()[0]}"
in_class = False
in_func = False
in_line = False
insert_line = False
count = 0
spaces = 0
new_lines = []
for line in lines:
if line.startswith(class_regex):
in_class = True
elif in_class and line.startswith(test_regex):
in_func = True
elif in_class and in_func and (line.startswith(line_begin_regex) or line.startswith(another_line_begin_regex)):
spaces = len(line.split(correct_line.split()[0])[0])
count += 1
if count == done_test[file]:
in_line = True
if in_class and in_func and in_line:
if ")" not in line:
continue
else:
insert_line = True
if in_class and in_func and in_line and insert_line:
new_lines.append(f"{spaces * ' '}{correct_line}")
in_class = in_func = in_line = insert_line = False
else:
new_lines.append(line)
with open(file, "w") as f:
for line in new_lines:
f.write(line)
def main(correct, fail=None):
if fail is not None:
with open(fail, "r") as f:
test_failures = set([l.strip() for l in f.readlines()])
else:
test_failures = None
with open(correct, "r") as f:
correct_lines = f.readlines()
done_tests = defaultdict(int)
for line in correct_lines:
file, class_name, test_name, correct_line = line.split(";")
if test_failures is None or "::".join([file, class_name, test_name]) in test_failures:
overwrite_file(file, class_name, test_name, correct_line, done_tests)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--correct_filename", help="filename of tests with expected result")
parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None)
args = parser.parse_args()
main(args.correct_filename, args.fail_filename)