[Img2Img] Fix batch size mismatch prompts vs. init images (#793)

* [Img2Img] Fix batch size mismatch prompts vs. init images

* Remove bogus folder

* fix

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
This commit is contained in:
Patrick von Platen 2022-10-12 13:00:36 +02:00 committed by GitHub
parent c1b6ea3dce
commit 6bc11782b7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 60 additions and 2 deletions

View File

@ -195,6 +195,7 @@ class StableDiffusionImg2ImgPipeline(DiffusionPipeline):
""" """
if isinstance(prompt, str): if isinstance(prompt, str):
batch_size = 1 batch_size = 1
prompt = [prompt]
elif isinstance(prompt, list): elif isinstance(prompt, list):
batch_size = len(prompt) batch_size = len(prompt)
else: else:
@ -284,8 +285,23 @@ class StableDiffusionImg2ImgPipeline(DiffusionPipeline):
init_latents = init_latent_dist.sample(generator=generator) init_latents = init_latent_dist.sample(generator=generator)
init_latents = 0.18215 * init_latents init_latents = 0.18215 * init_latents
# expand init_latents for batch_size if len(prompt) > init_latents.shape[0] and len(prompt) % init_latents.shape[0] == 0:
init_latents = torch.cat([init_latents] * batch_size * num_images_per_prompt, dim=0) # expand init_latents for batch_size
deprecation_message = (
f"You have passed {len(prompt)} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
" images (`init_image`). Initial images are now duplicating to match the number of text prompts. Note"
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
" your script to pass as many init images as text prompts to suppress this warning."
)
deprecate("len(prompt) != len(init_image)", "1.0.0", deprecation_message, standard_warn=False)
additional_image_per_prompt = len(prompt) // init_latents.shape[0]
init_latents = torch.cat([init_latents] * additional_image_per_prompt * num_images_per_prompt, dim=0)
elif len(prompt) > init_latents.shape[0] and len(prompt) % init_latents.shape[0] != 0:
raise ValueError(
f"Cannot duplicate `init_image` of batch size {init_latents.shape[0]} to {len(prompt)} text prompts."
)
else:
init_latents = torch.cat([init_latents] * num_images_per_prompt, dim=0)
# get the original timestep using init_timestep # get the original timestep using init_timestep
offset = self.scheduler.config.get("steps_offset", 0) offset = self.scheduler.config.get("steps_offset", 0)

View File

@ -698,6 +698,48 @@ class PipelineFastTests(unittest.TestCase):
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_img2img_multiple_init_images(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
init_image = self.dummy_image.to(device).repeat(2, 1, 1, 1)
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionImg2ImgPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=self.dummy_safety_checker,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = 2 * ["A painting of a squirrel eating a burger"]
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe(
prompt,
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
init_image=init_image,
)
image = output.images
image_slice = image[-1, -3:, -3:, -1]
assert image.shape == (2, 32, 32, 3)
expected_slice = np.array([0.5144, 0.4447, 0.4735, 0.6676, 0.5526, 0.5454, 0.645, 0.5149, 0.4689])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_img2img_k_lms(self): def test_stable_diffusion_img2img_k_lms(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet unet = self.dummy_cond_unet