Init for korean docs (#1910)

* init for korean docs

* edit build yml file for multi language docs

* edit one more build yml file for multi language docs

* add title for get_frontmatter error
This commit is contained in:
Chanran Kim 2023-01-05 06:59:42 +09:00 committed by GitHub
parent 9e17983d9f
commit 75d53cc839
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
92 changed files with 539 additions and 0 deletions

View File

@ -13,5 +13,6 @@ jobs:
with:
commit_sha: ${{ github.sha }}
package: diffusers
languages: en ko
secrets:
token: ${{ secrets.HUGGINGFACE_PUSH }}

View File

@ -14,3 +14,4 @@ jobs:
commit_sha: ${{ github.event.pull_request.head.sha }}
pr_number: ${{ github.event.number }}
package: diffusers
languages: en ko

View File

Before

Width:  |  Height:  |  Size: 102 KiB

After

Width:  |  Height:  |  Size: 102 KiB

View File

Before

Width:  |  Height:  |  Size: 14 KiB

After

Width:  |  Height:  |  Size: 14 KiB

193
docs/source/ko/_toctree.yml Normal file
View File

@ -0,0 +1,193 @@
- sections:
- local: index
title: "🧨 Diffusers"
- local: quicktour
title: "훑어보기"
- local: installation
title: "설치"
title: "시작하기"
- sections:
- sections:
- local: in_translation
title: "Loading Pipelines, Models, and Schedulers"
- local: in_translation
title: "Using different Schedulers"
- local: in_translation
title: "Configuring Pipelines, Models, and Schedulers"
- local: in_translation
title: "Loading and Adding Custom Pipelines"
title: "불러오기 & 허브 (번역 예정)"
- sections:
- local: in_translation
title: "Unconditional Image Generation"
- local: in_translation
title: "Text-to-Image Generation"
- local: in_translation
title: "Text-Guided Image-to-Image"
- local: in_translation
title: "Text-Guided Image-Inpainting"
- local: in_translation
title: "Text-Guided Depth-to-Image"
- local: in_translation
title: "Reusing seeds for deterministic generation"
- local: in_translation
title: "Community Pipelines"
- local: in_translation
title: "How to contribute a Pipeline"
title: "추론을 위한 파이프라인 (번역 예정)"
- sections:
- local: in_translation
title: "Reinforcement Learning"
- local: in_translation
title: "Audio"
- local: in_translation
title: "Other Modalities"
title: "Taking Diffusers Beyond Images"
title: "Diffusers 사용법 (번역 예정)"
- sections:
- local: in_translation
title: "Memory and Speed"
- local: in_translation
title: "xFormers"
- local: in_translation
title: "ONNX"
- local: in_translation
title: "OpenVINO"
- local: in_translation
title: "MPS"
- local: in_translation
title: "Habana Gaudi"
title: "최적화/특수 하드웨어 (번역 예정)"
- sections:
- local: in_translation
title: "Overview"
- local: in_translation
title: "Unconditional Image Generation"
- local: in_translation
title: "Textual Inversion"
- local: in_translation
title: "Dreambooth"
- local: in_translation
title: "Text-to-image fine-tuning"
title: "학습 (번역 예정)"
- sections:
- local: in_translation
title: "Stable Diffusion"
- local: in_translation
title: "Philosophy"
- local: in_translation
title: "How to contribute?"
title: "개념 설명 (번역 예정)"
- sections:
- sections:
- local: in_translation
title: "Models"
- local: in_translation
title: "Diffusion Pipeline"
- local: in_translation
title: "Logging"
- local: in_translation
title: "Configuration"
- local: in_translation
title: "Outputs"
title: "Main Classes"
- sections:
- local: in_translation
title: "Overview"
- local: in_translation
title: "AltDiffusion"
- local: in_translation
title: "Cycle Diffusion"
- local: in_translation
title: "DDIM"
- local: in_translation
title: "DDPM"
- local: in_translation
title: "Latent Diffusion"
- local: in_translation
title: "Unconditional Latent Diffusion"
- local: in_translation
title: "PaintByExample"
- local: in_translation
title: "PNDM"
- local: in_translation
title: "Score SDE VE"
- sections:
- local: in_translation
title: "Overview"
- local: in_translation
title: "Text-to-Image"
- local: in_translation
title: "Image-to-Image"
- local: in_translation
title: "Inpaint"
- local: in_translation
title: "Depth-to-Image"
- local: in_translation
title: "Image-Variation"
- local: in_translation
title: "Super-Resolution"
title: "Stable Diffusion"
- local: in_translation
title: "Stable Diffusion 2"
- local: in_translation
title: "Safe Stable Diffusion"
- local: in_translation
title: "Stochastic Karras VE"
- local: in_translation
title: "Dance Diffusion"
- local: in_translation
title: "UnCLIP"
- local: in_translation
title: "Versatile Diffusion"
- local: in_translation
title: "VQ Diffusion"
- local: in_translation
title: "RePaint"
- local: in_translation
title: "Audio Diffusion"
title: "파이프라인 (번역 예정)"
- sections:
- local: in_translation
title: "Overview"
- local: in_translation
title: "DDIM"
- local: in_translation
title: "DDPM"
- local: in_translation
title: "Singlestep DPM-Solver"
- local: in_translation
title: "Multistep DPM-Solver"
- local: in_translation
title: "Heun Scheduler"
- local: in_translation
title: "DPM Discrete Scheduler"
- local: in_translation
title: "DPM Discrete Scheduler with ancestral sampling"
- local: in_translation
title: "Stochastic Kerras VE"
- local: in_translation
title: "Linear Multistep"
- local: in_translation
title: "PNDM"
- local: in_translation
title: "VE-SDE"
- local: in_translation
title: "IPNDM"
- local: in_translation
title: "VP-SDE"
- local: in_translation
title: "Euler scheduler"
- local: in_translation
title: "Euler Ancestral Scheduler"
- local: in_translation
title: "VQDiffusionScheduler"
- local: in_translation
title: "RePaint Scheduler"
title: "스케줄러 (번역 예정)"
- sections:
- local: in_translation
title: "RL Planning"
title: "Experimental Features"
title: "API (번역 예정)"

View File

@ -0,0 +1,16 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# 번역중
열심히 번역을 진행중입니다. 조금만 기다려주세요.
감사합니다!

63
docs/source/ko/index.mdx Normal file
View File

@ -0,0 +1,63 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
<p align="center">
<br>
<img src="https://raw.githubusercontent.com/huggingface/diffusers/77aadfee6a891ab9fcfb780f87c693f7a5beeb8e/docs/source/imgs/diffusers_library.jpg" width="400"/>
<br>
</p>
# 🧨 Diffusers
🤗 Diffusers는 사전학습된 비전 및 오디오 확산 모델을 제공하고, 추론 및 학습을 위한 모듈식 도구 상자 역할을 합니다.
보다 정확하게, 🤗 Diffusers는 다음을 제공합니다:
- 단 몇 줄의 코드로 추론을 실행할 수 있는 최신 확산 파이프라인을 제공합니다. ([**Using Diffusers**](./using-diffusers/conditional_image_generation)를 살펴보세요) 지원되는 모든 파이프라인과 해당 논문에 대한 개요를 보려면 [**Pipelines**](#pipelines)을 살펴보세요.
- 추론에서 속도 vs 품질의 절충을 위해 상호교환적으로 사용할 수 있는 다양한 노이즈 스케줄러를 제공합니다. 자세한 내용은 [**Schedulers**](./api/schedulers/overview)를 참고하세요.
- UNet과 같은 여러 유형의 모델을 end-to-end 확산 시스템의 구성 요소로 사용할 수 있습니다. 자세한 내용은 [**Models**](./api/models)을 참고하세요.
- 가장 인기있는 확산 모델 테스크를 학습하는 방법을 보여주는 예제들을 제공합니다. 자세한 내용은 [**Training**](./training/overview)를 참고하세요.
## 🧨 Diffusers 파이프라인
다음 표에는 공시적으로 지원되는 모든 파이프라인, 관련 논문, 직접 사용해 볼 수 있는 Colab 노트북(사용 가능한 경우)이 요약되어 있습니다.
| Pipeline | Paper | Tasks | Colab
|---|---|:---:|:---:|
| [alt_diffusion](./api/pipelines/alt_diffusion) | [**AltDiffusion**](https://arxiv.org/abs/2211.06679) | Image-to-Image Text-Guided Generation |
| [audio_diffusion](./api/pipelines/audio_diffusion) | [**Audio Diffusion**](https://github.com/teticio/audio-diffusion.git) | Unconditional Audio Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/teticio/audio-diffusion/blob/master/notebooks/audio_diffusion_pipeline.ipynb)
| [cycle_diffusion](./api/pipelines/cycle_diffusion) | [**Cycle Diffusion**](https://arxiv.org/abs/2210.05559) | Image-to-Image Text-Guided Generation |
| [dance_diffusion](./api/pipelines/dance_diffusion) | [**Dance Diffusion**](https://github.com/williamberman/diffusers.git) | Unconditional Audio Generation |
| [ddpm](./api/pipelines/ddpm) | [**Denoising Diffusion Probabilistic Models**](https://arxiv.org/abs/2006.11239) | Unconditional Image Generation |
| [ddim](./api/pipelines/ddim) | [**Denoising Diffusion Implicit Models**](https://arxiv.org/abs/2010.02502) | Unconditional Image Generation |
| [latent_diffusion](./api/pipelines/latent_diffusion) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752)| Text-to-Image Generation |
| [latent_diffusion](./api/pipelines/latent_diffusion) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752)| Super Resolution Image-to-Image |
| [latent_diffusion_uncond](./api/pipelines/latent_diffusion_uncond) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752) | Unconditional Image Generation |
| [paint_by_example](./api/pipelines/paint_by_example) | [**Paint by Example: Exemplar-based Image Editing with Diffusion Models**](https://arxiv.org/abs/2211.13227) | Image-Guided Image Inpainting |
| [pndm](./api/pipelines/pndm) | [**Pseudo Numerical Methods for Diffusion Models on Manifolds**](https://arxiv.org/abs/2202.09778) | Unconditional Image Generation |
| [score_sde_ve](./api/pipelines/score_sde_ve) | [**Score-Based Generative Modeling through Stochastic Differential Equations**](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation |
| [score_sde_vp](./api/pipelines/score_sde_vp) | [**Score-Based Generative Modeling through Stochastic Differential Equations**](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation |
| [stable_diffusion](./api/pipelines/stable_diffusion/text2img) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Text-to-Image Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb)
| [stable_diffusion](./api/pipelines/stable_diffusion/img2img) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Image-to-Image Text-Guided Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/image_2_image_using_diffusers.ipynb)
| [stable_diffusion](./api/pipelines/stable_diffusion/inpaint) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Text-Guided Image Inpainting | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/in_painting_with_stable_diffusion_using_diffusers.ipynb)
| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Text-to-Image Generation |
| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Text-Guided Image Inpainting |
| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Text-Guided Super Resolution Image-to-Image |
| [stable_diffusion_safe](./api/pipelines/stable_diffusion_safe) | [**Safe Stable Diffusion**](https://arxiv.org/abs/2211.05105) | Text-Guided Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ml-research/safe-latent-diffusion/blob/main/examples/Safe%20Latent%20Diffusion.ipynb)
| [stochastic_karras_ve](./api/pipelines/stochastic_karras_ve) | [**Elucidating the Design Space of Diffusion-Based Generative Models**](https://arxiv.org/abs/2206.00364) | Unconditional Image Generation |
| [unclip](./api/pipelines/unclip) | [Hierarchical Text-Conditional Image Generation with CLIP Latents](https://arxiv.org/abs/2204.06125) | Text-to-Image Generation |
| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Text-to-Image Generation |
| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Image Variations Generation |
| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Dual Image and Text Guided Generation |
| [vq_diffusion](./api/pipelines/vq_diffusion) | [Vector Quantized Diffusion Model for Text-to-Image Synthesis](https://arxiv.org/abs/2111.14822) | Text-to-Image Generation |
**참고**: 파이프라인은 해당 문서에 설명된 대로 확산 시스템을 사용한 방법에 대한 간단한 예입니다.

View File

@ -0,0 +1,142 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# 설치
사용하시는 라이브러리에 맞는 🤗 Diffusers를 설치하세요.
🤗 Diffusers는 Python 3.7+, PyTorch 1.7.0+ 및 flax에서 테스트되었습니다. 사용중인 딥러닝 라이브러리에 대한 아래의 설치 안내를 따르세요.
- [PyTorch 설치 안내](https://pytorch.org/get-started/locally/)
- [Flax 설치 안내](https://flax.readthedocs.io/en/latest/)
## pip를 이용한 설치
[가상 환경](https://docs.python.org/3/library/venv.html)에 🤗 Diffusers를 설치해야 합니다.
Python 가상 환경에 익숙하지 않은 경우 [가상환경 pip 설치 가이드](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)를 살펴보세요.
가상 환경을 사용하면 서로 다른 프로젝트를 더 쉽게 관리하고, 종속성간의 호환성 문제를 피할 수 있습니다.
프로젝트 디렉토리에 가상 환경을 생성하는 것으로 시작하세요:
```bash
python -m venv .env
```
그리고 가상 환경을 활성화합니다:
```bash
source .env/bin/activate
```
이제 다음의 명령어로 🤗 Diffusers를 설치할 준비가 되었습니다:
**PyTorch의 경우**
```bash
pip install diffusers["torch"]
```
**Flax의 경우**
```bash
pip install diffusers["flax"]
```
## 소스로부터 설치
소스에서 `diffusers`를 설치하기 전에, `torch` 및 `accelerate`이 설치되어 있는지 확인하세요.
`torch` 설치에 대해서는 [torch docs](https://pytorch.org/get-started/locally/#start-locally)를 참고하세요.
다음과 같이 `accelerate`을 설치하세요.
```bash
pip install accelerate
```
다음 명령어를 사용하여 소스에서 🤗 Diffusers를 설치하세요:
```bash
pip install git+https://github.com/huggingface/diffusers
```
이 명령어는 최신 `stable` 버전이 아닌 최첨단 `main` 버전을 설치합니다.
`main` 버전은 최신 개발 정보를 최신 상태로 유지하는 데 유용합니다.
예를 들어 마지막 공식 릴리즈 이후 버그가 수정되었지만, 새 릴리즈가 아직 출시되지 않은 경우입니다.
그러나 이는 `main` 버전이 항상 안정적이지 않을 수 있음을 의미합니다.
우리는 `main` 버전이 지속적으로 작동하도록 노력하고 있으며, 대부분의 문제는 보통 몇 시간 또는 하루 안에 해결됩니다.
문제가 발생하면 더 빨리 해결할 수 있도록 [Issue](https://github.com/huggingface/transformers/issues)를 열어주세요!
## 편집가능한 설치
다음을 수행하려면 편집가능한 설치가 필요합니다:
* 소스 코드의 `main` 버전을 사용
* 🤗 Diffusers에 기여 (코드의 변경 사항을 테스트하기 위해 필요)
저장소를 복제하고 다음 명령어를 사용하여 🤗 Diffusers를 설치합니다:
```bash
git clone https://github.com/huggingface/diffusers.git
cd diffusers
```
**PyTorch의 경우**
```
pip install -e ".[torch]"
```
**Flax의 경우**
```
pip install -e ".[flax]"
```
이러한 명령어들은 저장소를 복제한 폴더와 Python 라이브러리 경로를 연결합니다.
Python은 이제 일반 라이브러리 경로에 더하여 복제한 폴더 내부를 살펴봅니다.
예를들어 Python 패키지가 `~/anaconda3/envs/main/lib/python3.7/site-packages/`에 설치되어 있는 경우 Python은 복제한 폴더인 `~/diffusers/`도 검색합니다.
<Tip warning={true}>
라이브러리를 계속 사용하려면 `diffusers` 폴더를 유지해야 합니다.
</Tip>
이제 다음 명령어를 사용하여 최신 버전의 🤗 Diffusers로 쉽게 업데이트할 수 있습니다:
```bash
cd ~/diffusers/
git pull
```
이렇게 하면, 다음에 실행할 때 Python 환경이 🤗 Diffusers의 `main` 버전을 찾게 됩니다.
## 텔레메트리 로깅에 대한 알림
우리 라이브러리는 `from_pretrained()` 요청 중에 텔레메트리 정보를 원격으로 수집합니다.
이 데이터에는 Diffusers 및 PyTorch/Flax의 버전, 요청된 모델 또는 파이프라인 클래스, 그리고 허브에서 호스팅되는 경우 사전학습된 체크포인트에 대한 경로를 포함합니다.
이 사용 데이터는 문제를 디버깅하고 새로운 기능의 우선순위를 지정하는데 도움이 됩니다.
텔레메트리는 HuggingFace 허브에서 모델과 파이프라인을 불러올 때만 전송되며, 로컬 사용 중에는 수집되지 않습니다.
우리는 추가 정보를 공유하지 않기를 원하는 사람이 있다는 것을 이해하고 개인 정보를 존중하므로, 터미널에서 `DISABLE_TELEMETRY` 환경 변수를 설정하여 텔레메트리 수집을 비활성화할 수 있습니다.
Linux/MacOS에서:
```bash
export DISABLE_TELEMETRY=YES
```
Windows에서:
```bash
set DISABLE_TELEMETRY=YES
```

View File

@ -0,0 +1,123 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# 훑어보기
🧨 Diffusers로 빠르게 시작하고 실행하세요!
이 훑어보기는 여러분이 개발자, 일반사용자 상관없이 시작하는 데 도움을 주며, 추론을 위해 [`DiffusionPipeline`] 사용하는 방법을 보여줍니다.
시작하기에 앞서서, 필요한 모든 라이브러리가 설치되어 있는지 확인하세요:
```bash
pip install --upgrade diffusers accelerate transformers
```
- [`accelerate`](https://huggingface.co/docs/accelerate/index)은 추론 및 학습을 위한 모델 불러오기 속도를 높입니다.
- [`transformers`](https://huggingface.co/docs/transformers/index)는 [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/overview)과 같이 가장 널리 사용되는 확산 모델을 실행하기 위해 필요합니다.
## DiffusionPipeline
[`DiffusionPipeline`]은 추론을 위해 사전학습된 확산 시스템을 사용하는 가장 쉬운 방법입니다. 다양한 양식의 많은 작업에 [`DiffusionPipeline`]을 바로 사용할 수 있습니다. 지원되는 작업은 아래의 표를 참고하세요:
| **Task** | **Description** | **Pipeline**
|------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------|
| Unconditional Image Generation | 가우시안 노이즈에서 이미지 생성 | [unconditional_image_generation](./using-diffusers/unconditional_image_generation`) |
| Text-Guided Image Generation | 텍스트 프롬프트로 이미지 생성 | [conditional_image_generation](./using-diffusers/conditional_image_generation) |
| Text-Guided Image-to-Image Translation | 텍스트 프롬프트에 따라 이미지 조정 | [img2img](./using-diffusers/img2img) |
| Text-Guided Image-Inpainting | 마스크 및 텍스트 프롬프트가 주어진 이미지의 마스킹된 부분을 채우기 | [inpaint](./using-diffusers/inpaint) |
| Text-Guided Depth-to-Image Translation | 깊이 추정을 통해 구조를 유지하면서 텍스트 프롬프트에 따라 이미지의 일부를 조정 | [depth2image](./using-diffusers/depth2image) |
확산 파이프라인이 다양한 작업에 대해 어떻게 작동하는지는 [**Using Diffusers**](./using-diffusers/overview)를 참고하세요.
예를들어, [`DiffusionPipeline`] 인스턴스를 생성하여 시작하고, 다운로드하려는 파이프라인 체크포인트를 지정합니다.
모든 [Diffusers' checkpoint](https://huggingface.co/models?library=diffusers&sort=downloads)에 대해 [`DiffusionPipeline`]을 사용할 수 있습니다.
하지만, 이 가이드에서는 [Stable Diffusion](https://huggingface.co/CompVis/stable-diffusion)을 사용하여 text-to-image를 하는데 [`DiffusionPipeline`]을 사용합니다.
[Stable Diffusion](https://huggingface.co/CompVis/stable-diffusion) 기반 모델을 실행하기 전에 [license](https://huggingface.co/spaces/CompVis/stable-diffusion-license)를 주의 깊게 읽으세요.
이는 모델의 향상된 이미지 생성 기능과 이것으로 생성될 수 있는 유해한 콘텐츠 때문입니다. 선택한 Stable Diffusion 모델(*예*: [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5))로 이동하여 라이센스를 읽으세요.
다음과 같이 모델을 로드할 수 있습니다:
```python
>>> from diffusers import DiffusionPipeline
>>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
```
[`DiffusionPipeline`]은 모든 모델링, 토큰화 및 스케줄링 구성요소를 다운로드하고 캐시합니다.
모델은 약 14억개의 매개변수로 구성되어 있으므로 GPU에서 실행하는 것이 좋습니다.
PyTorch에서와 마찬가지로 생성기 객체를 GPU로 옮길 수 있습니다.
```python
>>> pipeline.to("cuda")
```
이제 `pipeline`을 사용할 수 있습니다:
```python
>>> image = pipeline("An image of a squirrel in Picasso style").images[0]
```
출력은 기본적으로 [PIL Image object](https://pillow.readthedocs.io/en/stable/reference/Image.html?highlight=image#the-image-class)로 래핑됩니다.
다음과 같이 함수를 호출하여 이미지를 저장할 수 있습니다:
```python
>>> image.save("image_of_squirrel_painting.png")
```
**참고**: 다음을 통해 가중치를 다운로드하여 로컬에서 파이프라인을 사용할 수도 있습니다:
```
git lfs install
git clone https://huggingface.co/runwayml/stable-diffusion-v1-5
```
그리고 저장된 가중치를 파이프라인에 불러옵니다.
```python
>>> pipeline = DiffusionPipeline.from_pretrained("./stable-diffusion-v1-5")
```
파이프라인 실행은 동일한 모델 아키텍처이므로 위의 코드와 동일합니다.
```python
>>> generator.to("cuda")
>>> image = generator("An image of a squirrel in Picasso style").images[0]
>>> image.save("image_of_squirrel_painting.png")
```
확산 시스템은 각각 장점이 있는 여러 다른 [schedulers](./api/schedulers/overview)와 함께 사용할 수 있습니다. 기본적으로 Stable Diffusion은 `PNDMScheduler`로 실행되지만 다른 스케줄러를 사용하는 방법은 매우 간단합니다. *예* [`EulerDiscreteScheduler`] 스케줄러를 사용하려는 경우, 다음과 같이 사용할 수 있습니다:
```python
>>> from diffusers import EulerDiscreteScheduler
>>> pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
>>> # change scheduler to Euler
>>> pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config)
```
스케줄러 변경 방법에 대한 자세한 내용은 [Using Schedulers](./using-diffusers/schedulers) 가이드를 참고하세요.
[Stability AI's](https://stability.ai/)의 Stable Diffusion 모델은 인상적인 이미지 생성 모델이며 텍스트에서 이미지를 생성하는 것보다 훨씬 더 많은 작업을 수행할 수 있습니다. 우리는 Stable Diffusion만을 위한 전체 문서 페이지를 제공합니다 [link](./conceptual/stable_diffusion).
만약 더 적은 메모리, 더 높은 추론 속도, Mac과 같은 특정 하드웨어 또는 ONNX 런타임에서 실행되도록 Stable Diffusion을 최적화하는 방법을 알고 싶다면 최적화 페이지를 살펴보세요:
- [Optimized PyTorch on GPU](./optimization/fp16)
- [Mac OS with PyTorch](./optimization/mps)
- [ONNX](./optimization/onnx)
- [OpenVINO](./optimization/open_vino)
확산 모델을 미세조정하거나 학습시키려면, [**training section**](./training/overview)을 살펴보세요.
마지막으로, 생성된 이미지를 공개적으로 배포할 때 신중을 기해 주세요 🤗.