parent
f085d2f5c6
commit
7a1229fa29
|
@ -917,7 +917,7 @@ class PipelineTesterMixin(unittest.TestCase):
|
||||||
image_slice = image[0, -3:, -3:, -1]
|
image_slice = image[0, -3:, -3:, -1]
|
||||||
|
|
||||||
assert image.shape == (1, 512, 512, 3)
|
assert image.shape == (1, 512, 512, 3)
|
||||||
expected_slice = np.array([0.8354, 0.83, 0.866, 0.838, 0.8315, 0.867, 0.836, 0.8584, 0.869])
|
expected_slice = np.array([0.9326, 0.923, 0.951, 0.9365, 0.9214, 0.951, 0.9365, 0.9414, 0.918])
|
||||||
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
|
||||||
|
|
||||||
@slow
|
@slow
|
||||||
|
@ -1054,19 +1054,24 @@ class PipelineTesterMixin(unittest.TestCase):
|
||||||
output_image = ds[0]["image"].resize((768, 512))
|
output_image = ds[0]["image"].resize((768, 512))
|
||||||
|
|
||||||
model_id = "CompVis/stable-diffusion-v1-4"
|
model_id = "CompVis/stable-diffusion-v1-4"
|
||||||
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id, use_auth_token=True)
|
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
||||||
|
model_id,
|
||||||
|
revision="fp16", # fp16 to infer 768x512 images with 16GB of VRAM
|
||||||
|
torch_dtype=torch.float16,
|
||||||
|
use_auth_token=True,
|
||||||
|
)
|
||||||
pipe.to(torch_device)
|
pipe.to(torch_device)
|
||||||
pipe.set_progress_bar_config(disable=None)
|
pipe.set_progress_bar_config(disable=None)
|
||||||
|
|
||||||
prompt = "A fantasy landscape, trending on artstation"
|
prompt = "A fantasy landscape, trending on artstation"
|
||||||
|
|
||||||
generator = torch.Generator(device=torch_device).manual_seed(0)
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
||||||
image = pipe(prompt=prompt, init_image=init_image, strength=0.75, guidance_scale=7.5, generator=generator)[
|
with torch.autocast("cuda"):
|
||||||
"sample"
|
output = pipe(prompt=prompt, init_image=init_image, strength=0.75, guidance_scale=7.5, generator=generator)
|
||||||
][0]
|
image = output.images[0]
|
||||||
|
|
||||||
expected_array = np.array(output_image)
|
expected_array = np.array(output_image) / 255.0
|
||||||
sampled_array = np.array(image)
|
sampled_array = np.array(image) / 255.0
|
||||||
|
|
||||||
assert sampled_array.shape == (512, 768, 3)
|
assert sampled_array.shape == (512, 768, 3)
|
||||||
assert np.max(np.abs(sampled_array - expected_array)) < 1e-4
|
assert np.max(np.abs(sampled_array - expected_array)) < 1e-4
|
||||||
|
@ -1082,25 +1087,32 @@ class PipelineTesterMixin(unittest.TestCase):
|
||||||
lms = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
|
lms = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
|
||||||
|
|
||||||
model_id = "CompVis/stable-diffusion-v1-4"
|
model_id = "CompVis/stable-diffusion-v1-4"
|
||||||
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id, scheduler=lms, use_auth_token=True)
|
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
||||||
|
model_id,
|
||||||
|
scheduler=lms,
|
||||||
|
revision="fp16", # fp16 to infer 768x512 images with 16GB of VRAM
|
||||||
|
torch_dtype=torch.float16,
|
||||||
|
use_auth_token=True,
|
||||||
|
)
|
||||||
pipe.to(torch_device)
|
pipe.to(torch_device)
|
||||||
pipe.set_progress_bar_config(disable=None)
|
pipe.set_progress_bar_config(disable=None)
|
||||||
|
|
||||||
prompt = "A fantasy landscape, trending on artstation"
|
prompt = "A fantasy landscape, trending on artstation"
|
||||||
|
|
||||||
generator = torch.Generator(device=torch_device).manual_seed(0)
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
||||||
|
with torch.autocast("cuda"):
|
||||||
output = pipe(prompt=prompt, init_image=init_image, strength=0.75, guidance_scale=7.5, generator=generator)
|
output = pipe(prompt=prompt, init_image=init_image, strength=0.75, guidance_scale=7.5, generator=generator)
|
||||||
image = output.images[0]
|
image = output.images[0]
|
||||||
|
|
||||||
expected_array = np.array(output_image)
|
expected_array = np.array(output_image) / 255.0
|
||||||
sampled_array = np.array(image)
|
sampled_array = np.array(image) / 255.0
|
||||||
|
|
||||||
assert sampled_array.shape == (512, 768, 3)
|
assert sampled_array.shape == (512, 768, 3)
|
||||||
assert np.max(np.abs(sampled_array - expected_array)) < 1e-4
|
assert np.max(np.abs(sampled_array - expected_array)) < 1e-4
|
||||||
|
|
||||||
@slow
|
@slow
|
||||||
@unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
|
@unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
|
||||||
def test_stable_diffusion_in_paint_pipeline(self):
|
def test_stable_diffusion_inpaint_pipeline(self):
|
||||||
ds = load_dataset("hf-internal-testing/diffusers-images", split="train")
|
ds = load_dataset("hf-internal-testing/diffusers-images", split="train")
|
||||||
|
|
||||||
init_image = ds[3]["image"].resize((768, 512))
|
init_image = ds[3]["image"].resize((768, 512))
|
||||||
|
@ -1108,24 +1120,31 @@ class PipelineTesterMixin(unittest.TestCase):
|
||||||
output_image = ds[5]["image"].resize((768, 512))
|
output_image = ds[5]["image"].resize((768, 512))
|
||||||
|
|
||||||
model_id = "CompVis/stable-diffusion-v1-4"
|
model_id = "CompVis/stable-diffusion-v1-4"
|
||||||
pipe = StableDiffusionInpaintPipeline.from_pretrained(model_id, use_auth_token=True)
|
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
||||||
|
model_id,
|
||||||
|
revision="fp16", # fp16 to infer 768x512 images in 16GB of VRAM
|
||||||
|
torch_dtype=torch.float16,
|
||||||
|
use_auth_token=True,
|
||||||
|
)
|
||||||
pipe.to(torch_device)
|
pipe.to(torch_device)
|
||||||
pipe.set_progress_bar_config(disable=None)
|
pipe.set_progress_bar_config(disable=None)
|
||||||
|
|
||||||
prompt = "A red cat sitting on a parking bench"
|
prompt = "A red cat sitting on a parking bench"
|
||||||
|
|
||||||
generator = torch.Generator(device=torch_device).manual_seed(0)
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
||||||
image = pipe(
|
with torch.autocast("cuda"):
|
||||||
|
output = pipe(
|
||||||
prompt=prompt,
|
prompt=prompt,
|
||||||
init_image=init_image,
|
init_image=init_image,
|
||||||
mask_image=mask_image,
|
mask_image=mask_image,
|
||||||
strength=0.75,
|
strength=0.75,
|
||||||
guidance_scale=7.5,
|
guidance_scale=7.5,
|
||||||
generator=generator,
|
generator=generator,
|
||||||
).images[0]
|
)
|
||||||
|
image = output.images[0]
|
||||||
|
|
||||||
expected_array = np.array(output_image)
|
expected_array = np.array(output_image) / 255.0
|
||||||
sampled_array = np.array(image)
|
sampled_array = np.array(image) / 255.0
|
||||||
|
|
||||||
assert sampled_array.shape == (512, 768, 3)
|
assert sampled_array.shape == (512, 768, 3)
|
||||||
assert np.max(np.abs(sampled_array - expected_array)) < 1e-3
|
assert np.max(np.abs(sampled_array - expected_array)) < 1e-3
|
||||||
|
|
Loading…
Reference in New Issue