DreamBooth DeepSpeed support for under 8 GB VRAM training (#735)

* Support deepspeed

* Dreambooth DeepSpeed documentation

* Remove unnecessary casts, documentation

Due to recent commits some casts to half precision are not necessary
anymore.

Mention that DeepSpeed's version of Adam is about 2x faster.

* Review comments
This commit is contained in:
Henrik Forstén 2022-10-10 22:29:27 +03:00 committed by GitHub
parent 71ca10c6a4
commit 81bdbb5e2a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 55 additions and 7 deletions

View File

@ -119,6 +119,46 @@ accelerate launch train_dreambooth.py \
--max_train_steps=800
```
### Training on a 8 GB GPU:
By using [DeepSpeed](https://www.deepspeed.ai/) it's possible to offload some
tensors from VRAM to either CPU or NVME allowing to train with less VRAM.
DeepSpeed needs to be enabled with `accelerate config`. During configuration
answer yes to "Do you want to use DeepSpeed?". With DeepSpeed stage 2, fp16
mixed precision and offloading both parameters and optimizer state to cpu it's
possible to train on under 8 GB VRAM with a drawback of requiring significantly
more RAM (about 25 GB). See [documentation](https://huggingface.co/docs/accelerate/usage_guides/deepspeed) for more DeepSpeed configuration options.
Changing the default Adam optimizer to DeepSpeed's special version of Adam
`deepspeed.ops.adam.DeepSpeedCPUAdam` gives a substantial speedup but enabling
it requires CUDA toolchain with the same version as pytorch. 8-bit optimizer
does not seem to be compatible with DeepSpeed at the moment.
```bash
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export INSTANCE_DIR="path-to-instance-images"
export CLASS_DIR="path-to-class-images"
export OUTPUT_DIR="path-to-save-model"
accelerate launch train_dreambooth.py \
--pretrained_model_name_or_path=$MODEL_NAME --use_auth_token \
--instance_data_dir=$INSTANCE_DIR \
--class_data_dir=$CLASS_DIR \
--output_dir=$OUTPUT_DIR \
--with_prior_preservation --prior_loss_weight=1.0 \
--instance_prompt="a photo of sks dog" \
--class_prompt="a photo of dog" \
--resolution=512 \
--train_batch_size=1 \
--gradient_accumulation_steps=1 --gradient_checkpointing \
--learning_rate=5e-6 \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--num_class_images=200 \
--max_train_steps=800 \
--mixed_precision=fp16
```
## Inference

View File

@ -471,9 +471,17 @@ def main():
unet, optimizer, train_dataloader, lr_scheduler
)
# Move text_encode and vae to gpu
text_encoder.to(accelerator.device)
vae.to(accelerator.device)
weight_dtype = torch.float32
if args.mixed_precision == "fp16":
weight_dtype = torch.float16
elif args.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move text_encode and vae to gpu.
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
text_encoder.to(accelerator.device, dtype=weight_dtype)
vae.to(accelerator.device, dtype=weight_dtype)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
@ -509,11 +517,11 @@ def main():
with accelerator.accumulate(unet):
# Convert images to latent space
with torch.no_grad():
latents = vae.encode(batch["pixel_values"]).latent_dist.sample()
latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
latents = latents * 0.18215
# Sample noise that we'll add to the latents
noise = torch.randn(latents.shape).to(latents.device)
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
@ -539,12 +547,12 @@ def main():
loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean()
# Compute prior loss
prior_loss = F.mse_loss(noise_pred_prior, noise_prior, reduction="none").mean([1, 2, 3]).mean()
prior_loss = F.mse_loss(noise_pred_prior.float(), noise_prior.float(), reduction="mean")
# Add the prior loss to the instance loss.
loss = loss + args.prior_loss_weight * prior_loss
else:
loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean()
loss = F.mse_loss(noise_pred.float(), noise.float(), reduction="mean")
accelerator.backward(loss)
if accelerator.sync_gradients: