add test for ldm uncond
This commit is contained in:
parent
65788e46ed
commit
859ffea2b1
|
@ -34,6 +34,7 @@ from diffusers import (
|
|||
GradTTSPipeline,
|
||||
GradTTSScheduler,
|
||||
LatentDiffusionPipeline,
|
||||
LatentDiffusionUncondPipeline,
|
||||
NCSNpp,
|
||||
PNDMPipeline,
|
||||
PNDMScheduler,
|
||||
|
@ -46,7 +47,6 @@ from diffusers import (
|
|||
UNetLDMModel,
|
||||
UNetModel,
|
||||
VQModel,
|
||||
AutoencoderKL,
|
||||
)
|
||||
from diffusers.configuration_utils import ConfigMixin
|
||||
from diffusers.pipeline_utils import DiffusionPipeline
|
||||
|
@ -915,7 +915,7 @@ class AutoEncoderKLTests(ModelTesterMixin, unittest.TestCase):
|
|||
"out_ch": 3,
|
||||
"resolution": 32,
|
||||
"z_channels": 4,
|
||||
"attn_resolutions": []
|
||||
"attn_resolutions": [],
|
||||
}
|
||||
inputs_dict = self.dummy_input
|
||||
return init_dict, inputs_dict
|
||||
|
@ -925,7 +925,7 @@ class AutoEncoderKLTests(ModelTesterMixin, unittest.TestCase):
|
|||
|
||||
def test_training(self):
|
||||
pass
|
||||
|
||||
|
||||
def test_from_pretrained_hub(self):
|
||||
model, loading_info = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy", output_loading_info=True)
|
||||
self.assertIsNotNone(model)
|
||||
|
@ -1151,6 +1151,19 @@ class PipelineTesterMixin(unittest.TestCase):
|
|||
assert (image.abs().sum() - expected_image_sum).abs().cpu().item() < 1e-2
|
||||
assert (image.abs().mean() - expected_image_mean).abs().cpu().item() < 1e-4
|
||||
|
||||
@slow
|
||||
def test_ldm_uncond(self):
|
||||
ldm = LatentDiffusionUncondPipeline.from_pretrained("fusing/latent-diffusion-celeba-256")
|
||||
|
||||
generator = torch.manual_seed(0)
|
||||
image = ldm(generator=generator, num_inference_steps=5)
|
||||
|
||||
image_slice = image[0, -1, -3:, -3:].cpu()
|
||||
|
||||
assert image.shape == (1, 3, 256, 256)
|
||||
expected_slice = torch.tensor([0.5025, 0.4121, 0.3851, 0.4806, 0.3996, 0.3745, 0.4839, 0.4559, 0.4293])
|
||||
assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
|
||||
|
||||
def test_module_from_pipeline(self):
|
||||
model = DiffWave(num_res_layers=4)
|
||||
noise_scheduler = DDPMScheduler(timesteps=12)
|
||||
|
|
Loading…
Reference in New Issue