* only check for xformers when xformers are enabled * only test for xformers when enabling them
This commit is contained in:
parent
847daf25c7
commit
8e4733b3c3
|
@ -288,28 +288,29 @@ class AttentionBlock(nn.Module):
|
|||
self._use_memory_efficient_attention_xformers = False
|
||||
|
||||
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
||||
if not is_xformers_available():
|
||||
raise ModuleNotFoundError(
|
||||
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
|
||||
" xformers",
|
||||
name="xformers",
|
||||
)
|
||||
elif not torch.cuda.is_available():
|
||||
raise ValueError(
|
||||
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
|
||||
" available for GPU "
|
||||
)
|
||||
else:
|
||||
try:
|
||||
# Make sure we can run the memory efficient attention
|
||||
_ = xformers.ops.memory_efficient_attention(
|
||||
torch.randn((1, 2, 40), device="cuda"),
|
||||
torch.randn((1, 2, 40), device="cuda"),
|
||||
torch.randn((1, 2, 40), device="cuda"),
|
||||
if use_memory_efficient_attention_xformers:
|
||||
if not is_xformers_available():
|
||||
raise ModuleNotFoundError(
|
||||
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
|
||||
" xformers",
|
||||
name="xformers",
|
||||
)
|
||||
except Exception as e:
|
||||
raise e
|
||||
self._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
||||
elif not torch.cuda.is_available():
|
||||
raise ValueError(
|
||||
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
|
||||
" available for GPU "
|
||||
)
|
||||
else:
|
||||
try:
|
||||
# Make sure we can run the memory efficient attention
|
||||
_ = xformers.ops.memory_efficient_attention(
|
||||
torch.randn((1, 2, 40), device="cuda"),
|
||||
torch.randn((1, 2, 40), device="cuda"),
|
||||
torch.randn((1, 2, 40), device="cuda"),
|
||||
)
|
||||
except Exception as e:
|
||||
raise e
|
||||
self._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
||||
|
||||
def reshape_heads_to_batch_dim(self, tensor):
|
||||
batch_size, seq_len, dim = tensor.shape
|
||||
|
@ -450,31 +451,32 @@ class BasicTransformerBlock(nn.Module):
|
|||
self.norm3 = nn.LayerNorm(dim)
|
||||
|
||||
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
||||
if not is_xformers_available():
|
||||
print("Here is how to install it")
|
||||
raise ModuleNotFoundError(
|
||||
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
|
||||
" xformers",
|
||||
name="xformers",
|
||||
)
|
||||
elif not torch.cuda.is_available():
|
||||
raise ValueError(
|
||||
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
|
||||
" available for GPU "
|
||||
)
|
||||
else:
|
||||
try:
|
||||
# Make sure we can run the memory efficient attention
|
||||
_ = xformers.ops.memory_efficient_attention(
|
||||
torch.randn((1, 2, 40), device="cuda"),
|
||||
torch.randn((1, 2, 40), device="cuda"),
|
||||
torch.randn((1, 2, 40), device="cuda"),
|
||||
if use_memory_efficient_attention_xformers:
|
||||
if not is_xformers_available():
|
||||
print("Here is how to install it")
|
||||
raise ModuleNotFoundError(
|
||||
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
|
||||
" xformers",
|
||||
name="xformers",
|
||||
)
|
||||
except Exception as e:
|
||||
raise e
|
||||
self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
||||
if self.attn2 is not None:
|
||||
self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
||||
elif not torch.cuda.is_available():
|
||||
raise ValueError(
|
||||
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
|
||||
" available for GPU "
|
||||
)
|
||||
else:
|
||||
try:
|
||||
# Make sure we can run the memory efficient attention
|
||||
_ = xformers.ops.memory_efficient_attention(
|
||||
torch.randn((1, 2, 40), device="cuda"),
|
||||
torch.randn((1, 2, 40), device="cuda"),
|
||||
torch.randn((1, 2, 40), device="cuda"),
|
||||
)
|
||||
except Exception as e:
|
||||
raise e
|
||||
self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
||||
if self.attn2 is not None:
|
||||
self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
||||
|
||||
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None):
|
||||
# 1. Self-Attention
|
||||
|
|
Loading…
Reference in New Issue