Revert "[v0.4.0] Temporarily remove Flax modules from the public API (#755)"

This reverts commit 2e209c30cf.
This commit is contained in:
anton-l 2022-10-06 18:35:40 +02:00
parent c15cda03ca
commit 970e30606c
9 changed files with 100 additions and 6 deletions

View File

@ -45,3 +45,21 @@ The models are built on the base class ['ModelMixin'] that is a `torch.nn.module
## AutoencoderKL
[[autodoc]] AutoencoderKL
## FlaxModelMixin
[[autodoc]] FlaxModelMixin
## FlaxUNet2DConditionOutput
[[autodoc]] models.unet_2d_condition_flax.FlaxUNet2DConditionOutput
## FlaxUNet2DConditionModel
[[autodoc]] FlaxUNet2DConditionModel
## FlaxDecoderOutput
[[autodoc]] models.vae_flax.FlaxDecoderOutput
## FlaxAutoencoderKLOutput
[[autodoc]] models.vae_flax.FlaxAutoencoderKLOutput
## FlaxAutoencoderKL
[[autodoc]] FlaxAutoencoderKL

View File

@ -36,7 +36,7 @@ This allows for rapid experimentation and cleaner abstractions in the code, wher
To this end, the design of schedulers is such that:
- Schedulers can be used interchangeably between diffusion models in inference to find the preferred trade-off between speed and generation quality.
- Schedulers are currently by default in PyTorch.
- Schedulers are currently by default in PyTorch, but are designed to be framework independent (partial Jax support currently exists).
## API

View File

@ -84,10 +84,13 @@ _deps = [
"datasets",
"filelock",
"flake8>=3.8.3",
"flax>=0.4.1",
"hf-doc-builder>=0.3.0",
"huggingface-hub>=0.10.0",
"importlib_metadata",
"isort>=5.5.4",
"jax>=0.2.8,!=0.3.2,<=0.3.6",
"jaxlib>=0.1.65,<=0.3.6",
"modelcards>=0.1.4",
"numpy",
"onnxruntime",
@ -185,9 +188,15 @@ extras["test"] = deps_list(
"torchvision",
"transformers"
)
extras["torch"] = deps_list("torch")
if os.name == "nt": # windows
extras["flax"] = [] # jax is not supported on windows
else:
extras["flax"] = deps_list("jax", "jaxlib", "flax")
extras["dev"] = (
extras["quality"] + extras["test"] + extras["training"] + extras["docs"]
extras["quality"] + extras["test"] + extras["training"] + extras["docs"] + extras["torch"] + extras["flax"]
)
install_requires = [
@ -198,7 +207,6 @@ install_requires = [
deps["regex"],
deps["requests"],
deps["Pillow"],
deps["torch"]
]
setup(

View File

@ -1,4 +1,5 @@
from .utils import (
is_flax_available,
is_inflect_available,
is_onnx_available,
is_scipy_available,
@ -60,3 +61,25 @@ if is_torch_available() and is_transformers_available() and is_onnx_available():
from .pipelines import StableDiffusionOnnxPipeline
else:
from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403
if is_flax_available():
from .modeling_flax_utils import FlaxModelMixin
from .models.unet_2d_condition_flax import FlaxUNet2DConditionModel
from .models.vae_flax import FlaxAutoencoderKL
from .pipeline_flax_utils import FlaxDiffusionPipeline
from .schedulers import (
FlaxDDIMScheduler,
FlaxDDPMScheduler,
FlaxKarrasVeScheduler,
FlaxLMSDiscreteScheduler,
FlaxPNDMScheduler,
FlaxSchedulerMixin,
FlaxScoreSdeVeScheduler,
)
else:
from .utils.dummy_flax_objects import * # noqa F403
if is_flax_available() and is_transformers_available():
from .pipelines import FlaxStableDiffusionPipeline
else:
from .utils.dummy_flax_and_transformers_objects import * # noqa F403

View File

@ -8,10 +8,13 @@ deps = {
"datasets": "datasets",
"filelock": "filelock",
"flake8": "flake8>=3.8.3",
"flax": "flax>=0.4.1",
"hf-doc-builder": "hf-doc-builder>=0.3.0",
"huggingface-hub": "huggingface-hub>=0.10.0",
"importlib_metadata": "importlib_metadata",
"isort": "isort>=5.5.4",
"jax": "jax>=0.2.8,!=0.3.2,<=0.3.6",
"jaxlib": "jaxlib>=0.1.65,<=0.3.6",
"modelcards": "modelcards>=0.1.4",
"numpy": "numpy",
"onnxruntime": "onnxruntime",

View File

@ -12,10 +12,14 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from ..utils import is_torch_available
from ..utils import is_flax_available, is_torch_available
if is_torch_available():
from .unet_2d import UNet2DModel
from .unet_2d_condition import UNet2DConditionModel
from .vae import AutoencoderKL, VQModel
if is_flax_available():
from .unet_2d_condition_flax import FlaxUNet2DConditionModel
from .vae_flax import FlaxAutoencoderKL

View File

@ -21,3 +21,6 @@ if is_torch_available() and is_transformers_available():
if is_transformers_available() and is_onnx_available():
from .stable_diffusion import StableDiffusionOnnxPipeline
if is_transformers_available() and is_flax_available():
from .stable_diffusion import FlaxStableDiffusionPipeline

View File

@ -6,7 +6,7 @@ import numpy as np
import PIL
from PIL import Image
from ...utils import BaseOutput, is_onnx_available, is_torch_available, is_transformers_available
from ...utils import BaseOutput, is_flax_available, is_onnx_available, is_torch_available, is_transformers_available
@dataclass
@ -35,3 +35,27 @@ if is_transformers_available() and is_torch_available():
if is_transformers_available() and is_onnx_available():
from .pipeline_stable_diffusion_onnx import StableDiffusionOnnxPipeline
if is_transformers_available() and is_flax_available():
import flax
@flax.struct.dataclass
class FlaxStableDiffusionPipelineOutput(BaseOutput):
"""
Output class for Stable Diffusion pipelines.
Args:
images (`List[PIL.Image.Image]` or `np.ndarray`)
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
nsfw_content_detected (`List[bool]`)
List of flags denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content.
"""
images: Union[List[PIL.Image.Image], np.ndarray]
nsfw_content_detected: List[bool]
from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState
from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline
from .safety_checker_flax import FlaxStableDiffusionSafetyChecker

View File

@ -13,7 +13,7 @@
# limitations under the License.
from ..utils import is_scipy_available, is_torch_available
from ..utils import is_flax_available, is_scipy_available, is_torch_available
if is_torch_available():
@ -27,6 +27,17 @@ if is_torch_available():
else:
from ..utils.dummy_pt_objects import * # noqa F403
if is_flax_available():
from .scheduling_ddim_flax import FlaxDDIMScheduler
from .scheduling_ddpm_flax import FlaxDDPMScheduler
from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler
from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler
from .scheduling_pndm_flax import FlaxPNDMScheduler
from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler
from .scheduling_utils_flax import FlaxSchedulerMixin
else:
from ..utils.dummy_flax_objects import * # noqa F403
if is_scipy_available() and is_torch_available():
from .scheduling_lms_discrete import LMSDiscreteScheduler