Correct VQDiffusion Pipeline import
This commit is contained in:
parent
9eb389f298
commit
a24862cdaf
|
@ -1,324 +0,0 @@
|
|||
import inspect
|
||||
from typing import List, Optional, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from diffusers import AutoencoderKL, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNet2DConditionModel
|
||||
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
|
||||
from torchvision import transforms
|
||||
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
|
||||
|
||||
|
||||
class MakeCutouts(nn.Module):
|
||||
def __init__(self, cut_size, cut_power=1.0):
|
||||
super().__init__()
|
||||
|
||||
self.cut_size = cut_size
|
||||
self.cut_power = cut_power
|
||||
|
||||
def forward(self, pixel_values, num_cutouts):
|
||||
sideY, sideX = pixel_values.shape[2:4]
|
||||
max_size = min(sideX, sideY)
|
||||
min_size = min(sideX, sideY, self.cut_size)
|
||||
cutouts = []
|
||||
for _ in range(num_cutouts):
|
||||
size = int(torch.rand([]) ** self.cut_power * (max_size - min_size) + min_size)
|
||||
offsetx = torch.randint(0, sideX - size + 1, ())
|
||||
offsety = torch.randint(0, sideY - size + 1, ())
|
||||
cutout = pixel_values[:, :, offsety : offsety + size, offsetx : offsetx + size]
|
||||
cutouts.append(F.adaptive_avg_pool2d(cutout, self.cut_size))
|
||||
return torch.cat(cutouts)
|
||||
|
||||
|
||||
def spherical_dist_loss(x, y):
|
||||
x = F.normalize(x, dim=-1)
|
||||
y = F.normalize(y, dim=-1)
|
||||
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
|
||||
|
||||
|
||||
def set_requires_grad(model, value):
|
||||
for param in model.parameters():
|
||||
param.requires_grad = value
|
||||
|
||||
|
||||
class CLIPGuidedStableDiffusion(DiffusionPipeline):
|
||||
"""CLIP guided stable diffusion based on the amazing repo by @crowsonkb and @Jack000
|
||||
- https://github.com/Jack000/glid-3-xl
|
||||
- https://github.dev/crowsonkb/k-diffusion
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vae: AutoencoderKL,
|
||||
text_encoder: CLIPTextModel,
|
||||
clip_model: CLIPModel,
|
||||
tokenizer: CLIPTokenizer,
|
||||
unet: UNet2DConditionModel,
|
||||
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler],
|
||||
feature_extractor: CLIPFeatureExtractor,
|
||||
):
|
||||
super().__init__()
|
||||
self.register_modules(
|
||||
vae=vae,
|
||||
text_encoder=text_encoder,
|
||||
clip_model=clip_model,
|
||||
tokenizer=tokenizer,
|
||||
unet=unet,
|
||||
scheduler=scheduler,
|
||||
feature_extractor=feature_extractor,
|
||||
)
|
||||
|
||||
self.normalize = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std)
|
||||
self.make_cutouts = MakeCutouts(feature_extractor.size)
|
||||
|
||||
set_requires_grad(self.text_encoder, False)
|
||||
set_requires_grad(self.clip_model, False)
|
||||
|
||||
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
||||
if slice_size == "auto":
|
||||
# half the attention head size is usually a good trade-off between
|
||||
# speed and memory
|
||||
slice_size = self.unet.config.attention_head_dim // 2
|
||||
self.unet.set_attention_slice(slice_size)
|
||||
|
||||
def disable_attention_slicing(self):
|
||||
self.enable_attention_slicing(None)
|
||||
|
||||
def freeze_vae(self):
|
||||
set_requires_grad(self.vae, False)
|
||||
|
||||
def unfreeze_vae(self):
|
||||
set_requires_grad(self.vae, True)
|
||||
|
||||
def freeze_unet(self):
|
||||
set_requires_grad(self.unet, False)
|
||||
|
||||
def unfreeze_unet(self):
|
||||
set_requires_grad(self.unet, True)
|
||||
|
||||
@torch.enable_grad()
|
||||
def cond_fn(
|
||||
self,
|
||||
latents,
|
||||
timestep,
|
||||
index,
|
||||
text_embeddings,
|
||||
noise_pred_original,
|
||||
text_embeddings_clip,
|
||||
clip_guidance_scale,
|
||||
num_cutouts,
|
||||
use_cutouts=True,
|
||||
):
|
||||
latents = latents.detach().requires_grad_()
|
||||
|
||||
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
||||
sigma = self.scheduler.sigmas[index]
|
||||
# the model input needs to be scaled to match the continuous ODE formulation in K-LMS
|
||||
latent_model_input = latents / ((sigma**2 + 1) ** 0.5)
|
||||
else:
|
||||
latent_model_input = latents
|
||||
|
||||
# predict the noise residual
|
||||
noise_pred = self.unet(latent_model_input, timestep, encoder_hidden_states=text_embeddings).sample
|
||||
|
||||
if isinstance(self.scheduler, PNDMScheduler):
|
||||
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
|
||||
beta_prod_t = 1 - alpha_prod_t
|
||||
# compute predicted original sample from predicted noise also called
|
||||
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
||||
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
|
||||
|
||||
fac = torch.sqrt(beta_prod_t)
|
||||
sample = pred_original_sample * (fac) + latents * (1 - fac)
|
||||
elif isinstance(self.scheduler, LMSDiscreteScheduler):
|
||||
sigma = self.scheduler.sigmas[index]
|
||||
sample = latents - sigma * noise_pred
|
||||
else:
|
||||
raise ValueError(f"scheduler type {type(self.scheduler)} not supported")
|
||||
|
||||
sample = 1 / 0.18215 * sample
|
||||
image = self.vae.decode(sample).sample
|
||||
image = (image / 2 + 0.5).clamp(0, 1)
|
||||
|
||||
if use_cutouts:
|
||||
image = self.make_cutouts(image, num_cutouts)
|
||||
else:
|
||||
image = transforms.Resize(self.feature_extractor.size)(image)
|
||||
image = self.normalize(image).to(latents.dtype)
|
||||
|
||||
image_embeddings_clip = self.clip_model.get_image_features(image)
|
||||
image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
|
||||
|
||||
if use_cutouts:
|
||||
dists = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip)
|
||||
dists = dists.view([num_cutouts, sample.shape[0], -1])
|
||||
loss = dists.sum(2).mean(0).sum() * clip_guidance_scale
|
||||
else:
|
||||
loss = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip).mean() * clip_guidance_scale
|
||||
|
||||
grads = -torch.autograd.grad(loss, latents)[0]
|
||||
|
||||
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
||||
latents = latents.detach() + grads * (sigma**2)
|
||||
noise_pred = noise_pred_original
|
||||
else:
|
||||
noise_pred = noise_pred_original - torch.sqrt(beta_prod_t) * grads
|
||||
return noise_pred, latents
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
height: Optional[int] = 512,
|
||||
width: Optional[int] = 512,
|
||||
num_inference_steps: Optional[int] = 50,
|
||||
guidance_scale: Optional[float] = 7.5,
|
||||
num_images_per_prompt: Optional[int] = 1,
|
||||
clip_guidance_scale: Optional[float] = 100,
|
||||
clip_prompt: Optional[Union[str, List[str]]] = None,
|
||||
num_cutouts: Optional[int] = 4,
|
||||
use_cutouts: Optional[bool] = True,
|
||||
generator: Optional[torch.Generator] = None,
|
||||
latents: Optional[torch.FloatTensor] = None,
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
):
|
||||
if isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
|
||||
if height % 8 != 0 or width % 8 != 0:
|
||||
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
||||
|
||||
# get prompt text embeddings
|
||||
text_input = self.tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=self.tokenizer.model_max_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
|
||||
# duplicate text embeddings for each generation per prompt
|
||||
text_embeddings = text_embeddings.repeat_interleave(num_images_per_prompt, dim=0)
|
||||
|
||||
if clip_guidance_scale > 0:
|
||||
if clip_prompt is not None:
|
||||
clip_text_input = self.tokenizer(
|
||||
clip_prompt,
|
||||
padding="max_length",
|
||||
max_length=self.tokenizer.model_max_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
).input_ids.to(self.device)
|
||||
else:
|
||||
clip_text_input = text_input.input_ids.to(self.device)
|
||||
text_embeddings_clip = self.clip_model.get_text_features(clip_text_input)
|
||||
text_embeddings_clip = text_embeddings_clip / text_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
|
||||
# duplicate text embeddings clip for each generation per prompt
|
||||
text_embeddings_clip = text_embeddings_clip.repeat_interleave(num_images_per_prompt, dim=0)
|
||||
|
||||
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||||
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
||||
# corresponds to doing no classifier free guidance.
|
||||
do_classifier_free_guidance = guidance_scale > 1.0
|
||||
# get unconditional embeddings for classifier free guidance
|
||||
if do_classifier_free_guidance:
|
||||
max_length = text_input.input_ids.shape[-1]
|
||||
uncond_input = self.tokenizer([""], padding="max_length", max_length=max_length, return_tensors="pt")
|
||||
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
||||
# duplicate unconditional embeddings for each generation per prompt
|
||||
uncond_embeddings = uncond_embeddings.repeat_interleave(num_images_per_prompt, dim=0)
|
||||
|
||||
# For classifier free guidance, we need to do two forward passes.
|
||||
# Here we concatenate the unconditional and text embeddings into a single batch
|
||||
# to avoid doing two forward passes
|
||||
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
||||
|
||||
# get the initial random noise unless the user supplied it
|
||||
|
||||
# Unlike in other pipelines, latents need to be generated in the target device
|
||||
# for 1-to-1 results reproducibility with the CompVis implementation.
|
||||
# However this currently doesn't work in `mps`.
|
||||
latents_shape = (batch_size * num_images_per_prompt, self.unet.in_channels, height // 8, width // 8)
|
||||
latents_dtype = text_embeddings.dtype
|
||||
if latents is None:
|
||||
if self.device.type == "mps":
|
||||
# randn does not work reproducibly on mps
|
||||
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
|
||||
self.device
|
||||
)
|
||||
else:
|
||||
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
|
||||
else:
|
||||
if latents.shape != latents_shape:
|
||||
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
||||
latents = latents.to(self.device)
|
||||
|
||||
# set timesteps
|
||||
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
|
||||
extra_set_kwargs = {}
|
||||
if accepts_offset:
|
||||
extra_set_kwargs["offset"] = 1
|
||||
|
||||
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
|
||||
|
||||
# Some schedulers like PNDM have timesteps as arrays
|
||||
# It's more optimized to move all timesteps to correct device beforehand
|
||||
timesteps_tensor = self.scheduler.timesteps.to(self.device)
|
||||
|
||||
# scale the initial noise by the standard deviation required by the scheduler
|
||||
latents = latents * self.scheduler.init_noise_sigma
|
||||
|
||||
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
|
||||
# expand the latents if we are doing classifier free guidance
|
||||
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
||||
|
||||
# predict the noise residual
|
||||
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
||||
|
||||
# perform classifier free guidance
|
||||
if do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||||
|
||||
# perform clip guidance
|
||||
if clip_guidance_scale > 0:
|
||||
text_embeddings_for_guidance = (
|
||||
text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings
|
||||
)
|
||||
noise_pred, latents = self.cond_fn(
|
||||
latents,
|
||||
t,
|
||||
i,
|
||||
text_embeddings_for_guidance,
|
||||
noise_pred,
|
||||
text_embeddings_clip,
|
||||
clip_guidance_scale,
|
||||
num_cutouts,
|
||||
use_cutouts,
|
||||
)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
|
||||
|
||||
# scale and decode the image latents with vae
|
||||
latents = 1 / 0.18215 * latents
|
||||
image = self.vae.decode(latents).sample
|
||||
|
||||
image = (image / 2 + 0.5).clamp(0, 1)
|
||||
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
||||
|
||||
if output_type == "pil":
|
||||
image = self.numpy_to_pil(image)
|
||||
|
||||
if not return_dict:
|
||||
return (image, None)
|
||||
|
||||
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None)
|
|
@ -1 +0,0 @@
|
|||
{"url": "https://raw.githubusercontent.com/huggingface/diffusers/main/examples/community/clip_guided_stable_diffusion.py", "etag": "W/\"3e4886ba6cb31f36f75ec5127cd691e562bb04d1f0ff257edbe1c182fd6a210a\""}
|
|
@ -1,102 +0,0 @@
|
|||
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
|
||||
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
||||
|
||||
|
||||
class CustomPipeline(DiffusionPipeline):
|
||||
r"""
|
||||
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
||||
|
||||
Parameters:
|
||||
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
|
||||
scheduler ([`SchedulerMixin`]):
|
||||
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
|
||||
[`DDPMScheduler`], or [`DDIMScheduler`].
|
||||
"""
|
||||
|
||||
def __init__(self, unet, scheduler):
|
||||
super().__init__()
|
||||
self.register_modules(unet=unet, scheduler=scheduler)
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(
|
||||
self,
|
||||
batch_size: int = 1,
|
||||
generator: Optional[torch.Generator] = None,
|
||||
eta: float = 0.0,
|
||||
num_inference_steps: int = 50,
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
**kwargs,
|
||||
) -> Union[ImagePipelineOutput, Tuple]:
|
||||
r"""
|
||||
Args:
|
||||
batch_size (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate.
|
||||
generator (`torch.Generator`, *optional*):
|
||||
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
||||
deterministic.
|
||||
eta (`float`, *optional*, defaults to 0.0):
|
||||
The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM).
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||||
expense of slower inference.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
The output format of the generate image. Choose between
|
||||
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
|
||||
|
||||
Returns:
|
||||
[`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
|
||||
`return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
|
||||
generated images.
|
||||
"""
|
||||
|
||||
# Sample gaussian noise to begin loop
|
||||
image = torch.randn(
|
||||
(batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size),
|
||||
generator=generator,
|
||||
)
|
||||
image = image.to(self.device)
|
||||
|
||||
# set step values
|
||||
self.scheduler.set_timesteps(num_inference_steps)
|
||||
|
||||
for t in self.progress_bar(self.scheduler.timesteps):
|
||||
# 1. predict noise model_output
|
||||
model_output = self.unet(image, t).sample
|
||||
|
||||
# 2. predict previous mean of image x_t-1 and add variance depending on eta
|
||||
# eta corresponds to η in paper and should be between [0, 1]
|
||||
# do x_t -> x_t-1
|
||||
image = self.scheduler.step(model_output, t, image, eta).prev_sample
|
||||
|
||||
image = (image / 2 + 0.5).clamp(0, 1)
|
||||
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
||||
if output_type == "pil":
|
||||
image = self.numpy_to_pil(image)
|
||||
|
||||
if not return_dict:
|
||||
return (image,)
|
||||
|
||||
return ImagePipelineOutput(images=image), "This is a test"
|
|
@ -1 +0,0 @@
|
|||
b8fa12635e53eebebc22f95ee863e7af4fc2fb07
|
|
@ -1 +0,0 @@
|
|||
../../blobs/bbbcb9f65616524d6199fa3bc16dc0500fb2cbbb
|
Loading…
Reference in New Issue