[K Diffusion] Add k diffusion sampler natively (#1603)

* uP

* uP
This commit is contained in:
Patrick von Platen 2022-12-08 12:48:37 +01:00 committed by GitHub
parent 326de41915
commit a643c6300e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
13 changed files with 602 additions and 2 deletions

View File

@ -686,7 +686,7 @@ pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom
pipe = pipe.to("cuda") pipe = pipe.to("cuda")
prompt = "an astronaut riding a horse on mars" prompt = "an astronaut riding a horse on mars"
pipe.set_sampler("sample_heun") pipe.set_scheduler("sample_heun")
generator = torch.Generator(device="cuda").manual_seed(seed) generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe(prompt, generator=generator, num_inference_steps=20).images[0] image = pipe(prompt, generator=generator, num_inference_steps=20).images[0]
@ -721,7 +721,7 @@ pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda") pipe = pipe.to("cuda")
pipe.set_sampler("sample_euler") pipe.set_scheduler("sample_euler")
generator = torch.Generator(device="cuda").manual_seed(seed) generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe(prompt, generator=generator, num_inference_steps=50).images[0] image = pipe(prompt, generator=generator, num_inference_steps=50).images[0]
``` ```

View File

@ -13,6 +13,7 @@
# limitations under the License. # limitations under the License.
import importlib import importlib
import warnings
from typing import Callable, List, Optional, Union from typing import Callable, List, Optional, Union
import torch import torch
@ -111,6 +112,10 @@ class StableDiffusionPipeline(DiffusionPipeline):
self.k_diffusion_model = CompVisDenoiser(model) self.k_diffusion_model = CompVisDenoiser(model)
def set_sampler(self, scheduler_type: str): def set_sampler(self, scheduler_type: str):
warnings.warn("The `set_sampler` method is deprecated, please use `set_scheduler` instead.")
return self.set_scheduler(scheduler_type)
def set_scheduler(self, scheduler_type: str):
library = importlib.import_module("k_diffusion") library = importlib.import_module("k_diffusion")
sampling = getattr(library, "sampling") sampling = getattr(library, "sampling")
self.sampler = getattr(sampling, scheduler_type) self.sampler = getattr(sampling, scheduler_type)

1
hi Normal file
View File

@ -0,0 +1 @@

View File

@ -91,6 +91,7 @@ _deps = [
"isort>=5.5.4", "isort>=5.5.4",
"jax>=0.2.8,!=0.3.2", "jax>=0.2.8,!=0.3.2",
"jaxlib>=0.1.65", "jaxlib>=0.1.65",
"k-diffusion",
"librosa", "librosa",
"modelcards>=0.1.4", "modelcards>=0.1.4",
"numpy", "numpy",
@ -182,6 +183,7 @@ extras["docs"] = deps_list("hf-doc-builder")
extras["training"] = deps_list("accelerate", "datasets", "tensorboard", "modelcards") extras["training"] = deps_list("accelerate", "datasets", "tensorboard", "modelcards")
extras["test"] = deps_list( extras["test"] = deps_list(
"datasets", "datasets",
"k-diffusion",
"librosa", "librosa",
"parameterized", "parameterized",
"pytest", "pytest",

View File

@ -5,6 +5,7 @@ from .onnx_utils import OnnxRuntimeModel
from .utils import ( from .utils import (
is_flax_available, is_flax_available,
is_inflect_available, is_inflect_available,
is_k_diffusion_available,
is_onnx_available, is_onnx_available,
is_scipy_available, is_scipy_available,
is_torch_available, is_torch_available,
@ -90,6 +91,11 @@ if is_torch_available() and is_transformers_available():
else: else:
from .utils.dummy_torch_and_transformers_objects import * # noqa F403 from .utils.dummy_torch_and_transformers_objects import * # noqa F403
if is_torch_available() and is_transformers_available() and is_k_diffusion_available():
from .pipelines import StableDiffusionKDiffusionPipeline
else:
from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403
if is_torch_available() and is_transformers_available() and is_onnx_available(): if is_torch_available() and is_transformers_available() and is_onnx_available():
from .pipelines import ( from .pipelines import (
OnnxStableDiffusionImg2ImgPipeline, OnnxStableDiffusionImg2ImgPipeline,

View File

@ -15,6 +15,7 @@ deps = {
"isort": "isort>=5.5.4", "isort": "isort>=5.5.4",
"jax": "jax>=0.2.8,!=0.3.2", "jax": "jax>=0.2.8,!=0.3.2",
"jaxlib": "jaxlib>=0.1.65", "jaxlib": "jaxlib>=0.1.65",
"k-diffusion": "k-diffusion",
"librosa": "librosa", "librosa": "librosa",
"modelcards": "modelcards>=0.1.4", "modelcards": "modelcards>=0.1.4",
"numpy": "numpy", "numpy": "numpy",

View File

@ -1,5 +1,6 @@
from ..utils import ( from ..utils import (
is_flax_available, is_flax_available,
is_k_diffusion_available,
is_librosa_available, is_librosa_available,
is_onnx_available, is_onnx_available,
is_torch_available, is_torch_available,
@ -56,5 +57,8 @@ if is_transformers_available() and is_onnx_available():
StableDiffusionOnnxPipeline, StableDiffusionOnnxPipeline,
) )
if is_torch_available() and is_transformers_available() and is_k_diffusion_available():
from .stable_diffusion import StableDiffusionKDiffusionPipeline
if is_transformers_available() and is_flax_available(): if is_transformers_available() and is_flax_available():
from .stable_diffusion import FlaxStableDiffusionPipeline from .stable_diffusion import FlaxStableDiffusionPipeline

View File

@ -9,6 +9,7 @@ from PIL import Image
from ...utils import ( from ...utils import (
BaseOutput, BaseOutput,
is_flax_available, is_flax_available,
is_k_diffusion_available,
is_onnx_available, is_onnx_available,
is_torch_available, is_torch_available,
is_transformers_available, is_transformers_available,
@ -48,6 +49,9 @@ if is_transformers_available() and is_torch_available() and is_transformers_vers
else: else:
from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline
if is_transformers_available() and is_torch_available() and is_k_diffusion_available():
from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline
if is_transformers_available() and is_onnx_available(): if is_transformers_available() and is_onnx_available():
from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline
from .pipeline_onnx_stable_diffusion_img2img import OnnxStableDiffusionImg2ImgPipeline from .pipeline_onnx_stable_diffusion_img2img import OnnxStableDiffusionImg2ImgPipeline

View File

@ -0,0 +1,462 @@
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
from typing import Callable, List, Optional, Union
import torch
from k_diffusion.external import CompVisDenoiser, CompVisVDenoiser
from ... import DiffusionPipeline
from ...schedulers import LMSDiscreteScheduler
from ...utils import is_accelerate_available, logging
from . import StableDiffusionPipelineOutput
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class ModelWrapper:
def __init__(self, model, alphas_cumprod):
self.model = model
self.alphas_cumprod = alphas_cumprod
def apply_model(self, *args, **kwargs):
if len(args) == 3:
encoder_hidden_states = args[-1]
args = args[:2]
if kwargs.get("cond", None) is not None:
encoder_hidden_states = kwargs.pop("cond")
return self.model(*args, encoder_hidden_states=encoder_hidden_states, **kwargs).sample
class StableDiffusionKDiffusionPipeline(DiffusionPipeline):
r"""
Pipeline for text-to-image generation using Stable Diffusion.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
<Tip warning={true}>
This is an experimental pipeline and is likely to change in the future.
</Tip>
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
feature_extractor ([`CLIPFeatureExtractor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
_optional_components = ["safety_checker", "feature_extractor"]
def __init__(
self,
vae,
text_encoder,
tokenizer,
unet,
scheduler,
safety_checker,
feature_extractor,
requires_safety_checker: bool = True,
):
super().__init__()
logger.info(
f"{self.__class__} is an experimntal pipeline and is likely to change in the future. We recommend to use"
" this pipeline for fast experimentation / iteration if needed, but advice to rely on existing pipelines"
" as defined in https://huggingface.co/docs/diffusers/api/schedulers#implemented-schedulers for"
" production settings."
)
# get correct sigmas from LMS
scheduler = LMSDiscreteScheduler.from_config(scheduler.config)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.register_to_config(requires_safety_checker=requires_safety_checker)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
model = ModelWrapper(unet, scheduler.alphas_cumprod)
if scheduler.prediction_type == "v_prediction":
self.k_diffusion_model = CompVisVDenoiser(model)
else:
self.k_diffusion_model = CompVisDenoiser(model)
def set_scheduler(self, scheduler_type: str):
library = importlib.import_module("k_diffusion")
sampling = getattr(library, "sampling")
self.sampler = getattr(sampling, scheduler_type)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_sequential_cpu_offload
def enable_sequential_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`")
device = torch.device(f"cuda:{gpu_id}")
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
if cpu_offloaded_model is not None:
cpu_offload(cpu_offloaded_model, device)
if self.safety_checker is not None:
# TODO(Patrick) - there is currently a bug with cpu offload of nn.Parameter in accelerate
# fix by only offloading self.safety_checker for now
cpu_offload(self.safety_checker.vision_model, device)
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def _execution_device(self):
r"""
Returns the device on which the pipeline's models will be executed. After calling
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
hooks.
"""
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `list(int)`):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
"""
batch_size = len(prompt) if isinstance(prompt, list) else 1
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="pt").input_ids
if not torch.equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
text_embeddings = self.text_encoder(
text_input_ids.to(device),
attention_mask=attention_mask,
)
text_embeddings = text_embeddings[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
bs_embed, seq_len, _ = text_embeddings.shape
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = text_input_ids.shape[-1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
uncond_embeddings = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
uncond_embeddings = uncond_embeddings[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = uncond_embeddings.shape[1]
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
def run_safety_checker(self, image, device, dtype):
if self.safety_checker is not None:
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
)
else:
has_nsfw_concept = None
return image, has_nsfw_concept
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
def decode_latents(self, latents):
latents = 1 / 0.18215 * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image
def check_inputs(self, prompt, height, width, callback_steps):
if not isinstance(prompt, str) and not isinstance(prompt, list):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
if latents is None:
if device.type == "mps":
# randn does not work reproducibly on mps
latents = torch.randn(shape, generator=generator, device="cpu", dtype=dtype).to(device)
else:
latents = torch.randn(shape, generator=generator, device=device, dtype=dtype)
else:
if latents.shape != shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
return latents
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
height: int = 512,
width: int = 512,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
height (`int`, *optional*, defaults to 512):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to 512):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
# 1. Check inputs. Raise error if not correct
self.check_inputs(prompt, height, width, callback_steps)
# 2. Define call parameters
batch_size = 1 if isinstance(prompt, str) else len(prompt)
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = True
if guidance_scale <= 1.0:
raise ValueError("has to use guidance_scale")
# 3. Encode input prompt
text_embeddings = self._encode_prompt(
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=text_embeddings.device)
sigmas = self.scheduler.sigmas
sigmas = sigmas.to(text_embeddings.dtype)
# 5. Prepare latent variables
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
text_embeddings.dtype,
device,
generator,
latents,
)
latents = latents * sigmas[0]
self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device)
self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(latents.device)
# 6. Define model function
def model_fn(x, t):
latent_model_input = torch.cat([x] * 2)
noise_pred = self.k_diffusion_model(latent_model_input, t, cond=text_embeddings)
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
return noise_pred
# 7. Run k-diffusion solver
latents = self.sampler(model_fn, latents, sigmas)
# 8. Post-processing
image = self.decode_latents(latents)
# 9. Run safety checker
image, has_nsfw_concept = self.run_safety_checker(image, device, text_embeddings.dtype)
# 10. Convert to PIL
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

View File

@ -29,6 +29,7 @@ from .import_utils import (
is_accelerate_available, is_accelerate_available,
is_flax_available, is_flax_available,
is_inflect_available, is_inflect_available,
is_k_diffusion_available,
is_librosa_available, is_librosa_available,
is_modelcards_available, is_modelcards_available,
is_onnx_available, is_onnx_available,

View File

@ -0,0 +1,19 @@
# This file is autogenerated by the command `make fix-copies`, do not edit.
# flake8: noqa
from ..utils import DummyObject, requires_backends
class StableDiffusionKDiffusionPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers", "k_diffusion"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers", "k_diffusion"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers", "k_diffusion"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers", "k_diffusion"])

View File

@ -210,6 +210,13 @@ try:
except importlib_metadata.PackageNotFoundError: except importlib_metadata.PackageNotFoundError:
_xformers_available = False _xformers_available = False
_k_diffusion_available = importlib.util.find_spec("k_diffusion") is not None
try:
_k_diffusion_version = importlib_metadata.version("k_diffusion")
logger.debug(f"Successfully imported k-diffusion version {_k_diffusion_version}")
except importlib_metadata.PackageNotFoundError:
_k_diffusion_available = False
def is_torch_available(): def is_torch_available():
return _torch_available return _torch_available
@ -263,6 +270,10 @@ def is_accelerate_available():
return _accelerate_available return _accelerate_available
def is_k_diffusion_available():
return _k_diffusion_available
# docstyle-ignore # docstyle-ignore
FLAX_IMPORT_ERROR = """ FLAX_IMPORT_ERROR = """
{0} requires the FLAX library but it was not found in your environment. Checkout the instructions on the {0} requires the FLAX library but it was not found in your environment. Checkout the instructions on the
@ -317,6 +328,12 @@ UNIDECODE_IMPORT_ERROR = """
Unidecode` Unidecode`
""" """
# docstyle-ignore
K_DIFFUSION_IMPORT_ERROR = """
{0} requires the k-diffusion library but it was not found in your environment. You can install it with pip: `pip
install k-diffusion`
"""
BACKENDS_MAPPING = OrderedDict( BACKENDS_MAPPING = OrderedDict(
[ [
@ -329,6 +346,7 @@ BACKENDS_MAPPING = OrderedDict(
("transformers", (is_transformers_available, TRANSFORMERS_IMPORT_ERROR)), ("transformers", (is_transformers_available, TRANSFORMERS_IMPORT_ERROR)),
("unidecode", (is_unidecode_available, UNIDECODE_IMPORT_ERROR)), ("unidecode", (is_unidecode_available, UNIDECODE_IMPORT_ERROR)),
("librosa", (is_librosa_available, LIBROSA_IMPORT_ERROR)), ("librosa", (is_librosa_available, LIBROSA_IMPORT_ERROR)),
("k_diffusion", (is_k_diffusion_available, K_DIFFUSION_IMPORT_ERROR)),
] ]
) )

View File

@ -0,0 +1,77 @@
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from diffusers import StableDiffusionKDiffusionPipeline
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
torch.backends.cuda.matmul.allow_tf32 = False
@slow
@require_torch_gpu
class StableDiffusionPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_stable_diffusion_1(self):
sd_pipe = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
sd_pipe.set_scheduler("sample_euler")
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=9.0, num_inference_steps=20, output_type="np")
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.8887, 0.915, 0.91, 0.894, 0.909, 0.912, 0.919, 0.925, 0.883])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_2(self):
sd_pipe = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base")
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
sd_pipe.set_scheduler("sample_euler")
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=9.0, num_inference_steps=20, output_type="np")
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array(
[0.826810, 0.81958747, 0.8510199, 0.8376758, 0.83958465, 0.8682068, 0.84370345, 0.85251087, 0.85884345]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2