add attention up/down blocks for VAE (#161)
This commit is contained in:
parent
dd10da76a7
commit
b344c953a8
|
@ -640,6 +640,79 @@ class DownEncoderBlock2D(nn.Module):
|
||||||
return hidden_states
|
return hidden_states
|
||||||
|
|
||||||
|
|
||||||
|
class AttnDownEncoderBlock2D(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
in_channels: int,
|
||||||
|
out_channels: int,
|
||||||
|
dropout: float = 0.0,
|
||||||
|
num_layers: int = 1,
|
||||||
|
resnet_eps: float = 1e-6,
|
||||||
|
resnet_time_scale_shift: str = "default",
|
||||||
|
resnet_act_fn: str = "swish",
|
||||||
|
resnet_groups: int = 32,
|
||||||
|
resnet_pre_norm: bool = True,
|
||||||
|
attn_num_head_channels=1,
|
||||||
|
output_scale_factor=1.0,
|
||||||
|
add_downsample=True,
|
||||||
|
downsample_padding=1,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
resnets = []
|
||||||
|
attentions = []
|
||||||
|
|
||||||
|
for i in range(num_layers):
|
||||||
|
in_channels = in_channels if i == 0 else out_channels
|
||||||
|
resnets.append(
|
||||||
|
ResnetBlock(
|
||||||
|
in_channels=in_channels,
|
||||||
|
out_channels=out_channels,
|
||||||
|
temb_channels=None,
|
||||||
|
eps=resnet_eps,
|
||||||
|
groups=resnet_groups,
|
||||||
|
dropout=dropout,
|
||||||
|
time_embedding_norm=resnet_time_scale_shift,
|
||||||
|
non_linearity=resnet_act_fn,
|
||||||
|
output_scale_factor=output_scale_factor,
|
||||||
|
pre_norm=resnet_pre_norm,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
attentions.append(
|
||||||
|
AttentionBlockNew(
|
||||||
|
out_channels,
|
||||||
|
num_head_channels=attn_num_head_channels,
|
||||||
|
rescale_output_factor=output_scale_factor,
|
||||||
|
eps=resnet_eps,
|
||||||
|
num_groups=resnet_groups,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
self.attentions = nn.ModuleList(attentions)
|
||||||
|
self.resnets = nn.ModuleList(resnets)
|
||||||
|
|
||||||
|
if add_downsample:
|
||||||
|
self.downsamplers = nn.ModuleList(
|
||||||
|
[
|
||||||
|
Downsample2D(
|
||||||
|
in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
||||||
|
)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
self.downsamplers = None
|
||||||
|
|
||||||
|
def forward(self, hidden_states):
|
||||||
|
for resnet, attn in zip(self.resnets, self.attentions):
|
||||||
|
hidden_states = resnet(hidden_states, temb=None)
|
||||||
|
hidden_states = attn(hidden_states)
|
||||||
|
|
||||||
|
if self.downsamplers is not None:
|
||||||
|
for downsampler in self.downsamplers:
|
||||||
|
hidden_states = downsampler(hidden_states)
|
||||||
|
|
||||||
|
return hidden_states
|
||||||
|
|
||||||
|
|
||||||
class AttnSkipDownBlock2D(nn.Module):
|
class AttnSkipDownBlock2D(nn.Module):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
|
@ -1087,6 +1160,73 @@ class UpDecoderBlock2D(nn.Module):
|
||||||
return hidden_states
|
return hidden_states
|
||||||
|
|
||||||
|
|
||||||
|
class AttnUpDecoderBlock2D(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
in_channels: int,
|
||||||
|
out_channels: int,
|
||||||
|
dropout: float = 0.0,
|
||||||
|
num_layers: int = 1,
|
||||||
|
resnet_eps: float = 1e-6,
|
||||||
|
resnet_time_scale_shift: str = "default",
|
||||||
|
resnet_act_fn: str = "swish",
|
||||||
|
resnet_groups: int = 32,
|
||||||
|
resnet_pre_norm: bool = True,
|
||||||
|
attn_num_head_channels=1,
|
||||||
|
output_scale_factor=1.0,
|
||||||
|
add_upsample=True,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
resnets = []
|
||||||
|
attentions = []
|
||||||
|
|
||||||
|
for i in range(num_layers):
|
||||||
|
input_channels = in_channels if i == 0 else out_channels
|
||||||
|
|
||||||
|
resnets.append(
|
||||||
|
ResnetBlock(
|
||||||
|
in_channels=input_channels,
|
||||||
|
out_channels=out_channels,
|
||||||
|
temb_channels=None,
|
||||||
|
eps=resnet_eps,
|
||||||
|
groups=resnet_groups,
|
||||||
|
dropout=dropout,
|
||||||
|
time_embedding_norm=resnet_time_scale_shift,
|
||||||
|
non_linearity=resnet_act_fn,
|
||||||
|
output_scale_factor=output_scale_factor,
|
||||||
|
pre_norm=resnet_pre_norm,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
attentions.append(
|
||||||
|
AttentionBlockNew(
|
||||||
|
out_channels,
|
||||||
|
num_head_channels=attn_num_head_channels,
|
||||||
|
rescale_output_factor=output_scale_factor,
|
||||||
|
eps=resnet_eps,
|
||||||
|
num_groups=resnet_groups,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
self.attentions = nn.ModuleList(attentions)
|
||||||
|
self.resnets = nn.ModuleList(resnets)
|
||||||
|
|
||||||
|
if add_upsample:
|
||||||
|
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
||||||
|
else:
|
||||||
|
self.upsamplers = None
|
||||||
|
|
||||||
|
def forward(self, hidden_states):
|
||||||
|
for resnet, attn in zip(self.resnets, self.attentions):
|
||||||
|
hidden_states = resnet(hidden_states, temb=None)
|
||||||
|
hidden_states = attn(hidden_states)
|
||||||
|
|
||||||
|
if self.upsamplers is not None:
|
||||||
|
for upsampler in self.upsamplers:
|
||||||
|
hidden_states = upsampler(hidden_states)
|
||||||
|
|
||||||
|
return hidden_states
|
||||||
|
|
||||||
|
|
||||||
class AttnSkipUpBlock2D(nn.Module):
|
class AttnSkipUpBlock2D(nn.Module):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
|
|
Loading…
Reference in New Issue