add attention up/down blocks for VAE (#161)

This commit is contained in:
Suraj Patil 2022-08-10 16:38:32 +05:30 committed by GitHub
parent dd10da76a7
commit b344c953a8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 140 additions and 0 deletions

View File

@ -640,6 +640,79 @@ class DownEncoderBlock2D(nn.Module):
return hidden_states return hidden_states
class AttnDownEncoderBlock2D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
attn_num_head_channels=1,
output_scale_factor=1.0,
add_downsample=True,
downsample_padding=1,
):
super().__init__()
resnets = []
attentions = []
for i in range(num_layers):
in_channels = in_channels if i == 0 else out_channels
resnets.append(
ResnetBlock(
in_channels=in_channels,
out_channels=out_channels,
temb_channels=None,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
attentions.append(
AttentionBlockNew(
out_channels,
num_head_channels=attn_num_head_channels,
rescale_output_factor=output_scale_factor,
eps=resnet_eps,
num_groups=resnet_groups,
)
)
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
if add_downsample:
self.downsamplers = nn.ModuleList(
[
Downsample2D(
in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
)
]
)
else:
self.downsamplers = None
def forward(self, hidden_states):
for resnet, attn in zip(self.resnets, self.attentions):
hidden_states = resnet(hidden_states, temb=None)
hidden_states = attn(hidden_states)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
return hidden_states
class AttnSkipDownBlock2D(nn.Module): class AttnSkipDownBlock2D(nn.Module):
def __init__( def __init__(
self, self,
@ -1087,6 +1160,73 @@ class UpDecoderBlock2D(nn.Module):
return hidden_states return hidden_states
class AttnUpDecoderBlock2D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
attn_num_head_channels=1,
output_scale_factor=1.0,
add_upsample=True,
):
super().__init__()
resnets = []
attentions = []
for i in range(num_layers):
input_channels = in_channels if i == 0 else out_channels
resnets.append(
ResnetBlock(
in_channels=input_channels,
out_channels=out_channels,
temb_channels=None,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
attentions.append(
AttentionBlockNew(
out_channels,
num_head_channels=attn_num_head_channels,
rescale_output_factor=output_scale_factor,
eps=resnet_eps,
num_groups=resnet_groups,
)
)
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
if add_upsample:
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
else:
self.upsamplers = None
def forward(self, hidden_states):
for resnet, attn in zip(self.resnets, self.attentions):
hidden_states = resnet(hidden_states, temb=None)
hidden_states = attn(hidden_states)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states)
return hidden_states
class AttnSkipUpBlock2D(nn.Module): class AttnSkipUpBlock2D(nn.Module):
def __init__( def __init__(
self, self,