add attention up/down blocks for VAE (#161)
This commit is contained in:
parent
dd10da76a7
commit
b344c953a8
|
@ -640,6 +640,79 @@ class DownEncoderBlock2D(nn.Module):
|
|||
return hidden_states
|
||||
|
||||
|
||||
class AttnDownEncoderBlock2D(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
dropout: float = 0.0,
|
||||
num_layers: int = 1,
|
||||
resnet_eps: float = 1e-6,
|
||||
resnet_time_scale_shift: str = "default",
|
||||
resnet_act_fn: str = "swish",
|
||||
resnet_groups: int = 32,
|
||||
resnet_pre_norm: bool = True,
|
||||
attn_num_head_channels=1,
|
||||
output_scale_factor=1.0,
|
||||
add_downsample=True,
|
||||
downsample_padding=1,
|
||||
):
|
||||
super().__init__()
|
||||
resnets = []
|
||||
attentions = []
|
||||
|
||||
for i in range(num_layers):
|
||||
in_channels = in_channels if i == 0 else out_channels
|
||||
resnets.append(
|
||||
ResnetBlock(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
temb_channels=None,
|
||||
eps=resnet_eps,
|
||||
groups=resnet_groups,
|
||||
dropout=dropout,
|
||||
time_embedding_norm=resnet_time_scale_shift,
|
||||
non_linearity=resnet_act_fn,
|
||||
output_scale_factor=output_scale_factor,
|
||||
pre_norm=resnet_pre_norm,
|
||||
)
|
||||
)
|
||||
attentions.append(
|
||||
AttentionBlockNew(
|
||||
out_channels,
|
||||
num_head_channels=attn_num_head_channels,
|
||||
rescale_output_factor=output_scale_factor,
|
||||
eps=resnet_eps,
|
||||
num_groups=resnet_groups,
|
||||
)
|
||||
)
|
||||
|
||||
self.attentions = nn.ModuleList(attentions)
|
||||
self.resnets = nn.ModuleList(resnets)
|
||||
|
||||
if add_downsample:
|
||||
self.downsamplers = nn.ModuleList(
|
||||
[
|
||||
Downsample2D(
|
||||
in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
||||
)
|
||||
]
|
||||
)
|
||||
else:
|
||||
self.downsamplers = None
|
||||
|
||||
def forward(self, hidden_states):
|
||||
for resnet, attn in zip(self.resnets, self.attentions):
|
||||
hidden_states = resnet(hidden_states, temb=None)
|
||||
hidden_states = attn(hidden_states)
|
||||
|
||||
if self.downsamplers is not None:
|
||||
for downsampler in self.downsamplers:
|
||||
hidden_states = downsampler(hidden_states)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class AttnSkipDownBlock2D(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
|
@ -1087,6 +1160,73 @@ class UpDecoderBlock2D(nn.Module):
|
|||
return hidden_states
|
||||
|
||||
|
||||
class AttnUpDecoderBlock2D(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
dropout: float = 0.0,
|
||||
num_layers: int = 1,
|
||||
resnet_eps: float = 1e-6,
|
||||
resnet_time_scale_shift: str = "default",
|
||||
resnet_act_fn: str = "swish",
|
||||
resnet_groups: int = 32,
|
||||
resnet_pre_norm: bool = True,
|
||||
attn_num_head_channels=1,
|
||||
output_scale_factor=1.0,
|
||||
add_upsample=True,
|
||||
):
|
||||
super().__init__()
|
||||
resnets = []
|
||||
attentions = []
|
||||
|
||||
for i in range(num_layers):
|
||||
input_channels = in_channels if i == 0 else out_channels
|
||||
|
||||
resnets.append(
|
||||
ResnetBlock(
|
||||
in_channels=input_channels,
|
||||
out_channels=out_channels,
|
||||
temb_channels=None,
|
||||
eps=resnet_eps,
|
||||
groups=resnet_groups,
|
||||
dropout=dropout,
|
||||
time_embedding_norm=resnet_time_scale_shift,
|
||||
non_linearity=resnet_act_fn,
|
||||
output_scale_factor=output_scale_factor,
|
||||
pre_norm=resnet_pre_norm,
|
||||
)
|
||||
)
|
||||
attentions.append(
|
||||
AttentionBlockNew(
|
||||
out_channels,
|
||||
num_head_channels=attn_num_head_channels,
|
||||
rescale_output_factor=output_scale_factor,
|
||||
eps=resnet_eps,
|
||||
num_groups=resnet_groups,
|
||||
)
|
||||
)
|
||||
|
||||
self.attentions = nn.ModuleList(attentions)
|
||||
self.resnets = nn.ModuleList(resnets)
|
||||
|
||||
if add_upsample:
|
||||
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
||||
else:
|
||||
self.upsamplers = None
|
||||
|
||||
def forward(self, hidden_states):
|
||||
for resnet, attn in zip(self.resnets, self.attentions):
|
||||
hidden_states = resnet(hidden_states, temb=None)
|
||||
hidden_states = attn(hidden_states)
|
||||
|
||||
if self.upsamplers is not None:
|
||||
for upsampler in self.upsamplers:
|
||||
hidden_states = upsampler(hidden_states)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class AttnSkipUpBlock2D(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
|
|
Loading…
Reference in New Issue