Karras VE, DDIM and DDPM flax schedulers (#508)
* beta never changes removed from state * fix typos in docs * removed unused var * initial ddim flax scheduler * import * added dummy objects * fix style * fix typo * docs * fix typo in comment * set return type * added flax ddom * fix style * remake * pass PRNG key as argument and split before use * fix doc string * use config * added flax Karras VE scheduler * make style * fix dummy * fix ndarray type annotation * replace returns a new state * added lms_discrete scheduler * use self.config * add_noise needs state * use config * use config * docstring * added flax score sde ve * fix imports * fix typos
This commit is contained in:
parent
83a7bb2aba
commit
b34be039f9
|
@ -504,7 +504,9 @@ def main():
|
|||
noise = torch.randn(latents.shape).to(latents.device)
|
||||
bsz = latents.shape[0]
|
||||
# Sample a random timestep for each image
|
||||
timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device).long()
|
||||
timesteps = torch.randint(
|
||||
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device
|
||||
).long()
|
||||
|
||||
# Add noise to the latents according to the noise magnitude at each timestep
|
||||
# (this is the forward diffusion process)
|
||||
|
|
|
@ -130,7 +130,7 @@ def main(args):
|
|||
bsz = clean_images.shape[0]
|
||||
# Sample a random timestep for each image
|
||||
timesteps = torch.randint(
|
||||
0, noise_scheduler.num_train_timesteps, (bsz,), device=clean_images.device
|
||||
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=clean_images.device
|
||||
).long()
|
||||
|
||||
# Add noise to the clean images according to the noise magnitude at each timestep
|
||||
|
|
|
@ -64,6 +64,13 @@ else:
|
|||
|
||||
if is_flax_available():
|
||||
from .modeling_flax_utils import FlaxModelMixin
|
||||
from .schedulers import FlaxPNDMScheduler
|
||||
from .schedulers import (
|
||||
FlaxDDIMScheduler,
|
||||
FlaxDDPMScheduler,
|
||||
FlaxKarrasVeScheduler,
|
||||
FlaxLMSDiscreteScheduler,
|
||||
FlaxPNDMScheduler,
|
||||
FlaxScoreSdeVeScheduler,
|
||||
)
|
||||
else:
|
||||
from .utils.dummy_flax_objects import * # noqa F403
|
||||
|
|
|
@ -386,7 +386,7 @@ class FlaxModelMixin:
|
|||
raise ValueError from e
|
||||
except (UnicodeDecodeError, ValueError):
|
||||
raise EnvironmentError(f"Unable to convert {model_file} to Flax deserializable object. ")
|
||||
# make sure all arrays are stored as jnp.arrays
|
||||
# make sure all arrays are stored as jnp.ndarray
|
||||
# NOTE: This is to prevent a bug this will be fixed in Flax >= v0.3.4:
|
||||
# https://github.com/google/flax/issues/1261
|
||||
state = jax.tree_util.tree_map(lambda x: jax.device_put(x, jax.devices("cpu")[0]), state)
|
||||
|
|
|
@ -80,7 +80,7 @@ class ScoreSdeVePipeline(DiffusionPipeline):
|
|||
sigma_t = self.scheduler.sigmas[i] * torch.ones(shape[0], device=self.device)
|
||||
|
||||
# correction step
|
||||
for _ in range(self.scheduler.correct_steps):
|
||||
for _ in range(self.scheduler.config.correct_steps):
|
||||
model_output = self.unet(sample, sigma_t).sample
|
||||
sample = self.scheduler.step_correct(model_output, sample, generator=generator).prev_sample
|
||||
|
||||
|
|
|
@ -28,7 +28,12 @@ else:
|
|||
from ..utils.dummy_pt_objects import * # noqa F403
|
||||
|
||||
if is_flax_available():
|
||||
from .scheduling_ddim_flax import FlaxDDIMScheduler
|
||||
from .scheduling_ddpm_flax import FlaxDDPMScheduler
|
||||
from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler
|
||||
from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler
|
||||
from .scheduling_pndm_flax import FlaxPNDMScheduler
|
||||
from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler
|
||||
else:
|
||||
from ..utils.dummy_flax_objects import * # noqa F403
|
||||
|
||||
|
|
|
@ -113,7 +113,7 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin):
|
|||
|
||||
# At every step in ddim, we are looking into the previous alphas_cumprod
|
||||
# For the final step, there is no previous alphas_cumprod because we are already at 0
|
||||
# `set_alpha_to_one` decides whether we set this paratemer simply to one or
|
||||
# `set_alpha_to_one` decides whether we set this parameter simply to one or
|
||||
# whether we use the final alpha of the "non-previous" one.
|
||||
self.final_alpha_cumprod = np.array(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
|
||||
|
||||
|
@ -195,7 +195,7 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin):
|
|||
# - pred_original_sample -> f_theta(x_t, t) or x_0
|
||||
# - std_dev_t -> sigma_t
|
||||
# - eta -> η
|
||||
# - pred_sample_direction -> "direction pointingc to x_t"
|
||||
# - pred_sample_direction -> "direction pointing to x_t"
|
||||
# - pred_prev_sample -> "x_t-1"
|
||||
|
||||
# 1. get previous step value (=t-1)
|
||||
|
|
|
@ -0,0 +1,274 @@
|
|||
# Copyright 2022 Stanford University Team and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
|
||||
# and https://github.com/hojonathanho/diffusion
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import flax
|
||||
import jax.numpy as jnp
|
||||
from jax import random
|
||||
|
||||
from ..configuration_utils import ConfigMixin, register_to_config
|
||||
from .scheduling_utils import SchedulerMixin, SchedulerOutput
|
||||
|
||||
|
||||
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> jnp.ndarray:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
(1-beta) over time from t = [0,1].
|
||||
|
||||
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
|
||||
to that part of the diffusion process.
|
||||
|
||||
|
||||
Args:
|
||||
num_diffusion_timesteps (`int`): the number of betas to produce.
|
||||
max_beta (`float`): the maximum beta to use; use values lower than 1 to
|
||||
prevent singularities.
|
||||
|
||||
Returns:
|
||||
betas (`jnp.ndarray`): the betas used by the scheduler to step the model outputs
|
||||
"""
|
||||
|
||||
def alpha_bar(time_step):
|
||||
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2
|
||||
|
||||
betas = []
|
||||
for i in range(num_diffusion_timesteps):
|
||||
t1 = i / num_diffusion_timesteps
|
||||
t2 = (i + 1) / num_diffusion_timesteps
|
||||
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
||||
return jnp.array(betas, dtype=jnp.float32)
|
||||
|
||||
|
||||
@flax.struct.dataclass
|
||||
class DDIMSchedulerState:
|
||||
# setable values
|
||||
timesteps: jnp.ndarray
|
||||
num_inference_steps: Optional[int] = None
|
||||
|
||||
@classmethod
|
||||
def create(cls, num_train_timesteps: int):
|
||||
return cls(timesteps=jnp.arange(0, num_train_timesteps)[::-1])
|
||||
|
||||
|
||||
@dataclass
|
||||
class FlaxSchedulerOutput(SchedulerOutput):
|
||||
state: DDIMSchedulerState
|
||||
|
||||
|
||||
class FlaxDDIMScheduler(SchedulerMixin, ConfigMixin):
|
||||
"""
|
||||
Denoising diffusion implicit models is a scheduler that extends the denoising procedure introduced in denoising
|
||||
diffusion probabilistic models (DDPMs) with non-Markovian guidance.
|
||||
|
||||
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
|
||||
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
|
||||
[`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
|
||||
[`~ConfigMixin.from_config`] functions.
|
||||
|
||||
For more details, see the original paper: https://arxiv.org/abs/2010.02502
|
||||
|
||||
Args:
|
||||
num_train_timesteps (`int`): number of diffusion steps used to train the model.
|
||||
beta_start (`float`): the starting `beta` value of inference.
|
||||
beta_end (`float`): the final `beta` value.
|
||||
beta_schedule (`str`):
|
||||
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
||||
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
|
||||
trained_betas (`jnp.ndarray`, optional):
|
||||
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
|
||||
clip_sample (`bool`, default `True`):
|
||||
option to clip predicted sample between -1 and 1 for numerical stability.
|
||||
set_alpha_to_one (`bool`, default `True`):
|
||||
if alpha for final step is 1 or the final alpha of the "non-previous" one.
|
||||
"""
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
num_train_timesteps: int = 1000,
|
||||
beta_start: float = 0.0001,
|
||||
beta_end: float = 0.02,
|
||||
beta_schedule: str = "linear",
|
||||
trained_betas: Optional[jnp.ndarray] = None,
|
||||
clip_sample: bool = True,
|
||||
set_alpha_to_one: bool = True,
|
||||
):
|
||||
if trained_betas is not None:
|
||||
self.betas = jnp.asarray(trained_betas)
|
||||
if beta_schedule == "linear":
|
||||
self.betas = jnp.linspace(beta_start, beta_end, num_train_timesteps, dtype=jnp.float32)
|
||||
elif beta_schedule == "scaled_linear":
|
||||
# this schedule is very specific to the latent diffusion model.
|
||||
self.betas = jnp.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=jnp.float32) ** 2
|
||||
elif beta_schedule == "squaredcos_cap_v2":
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
||||
|
||||
self.alphas = 1.0 - self.betas
|
||||
self.alphas_cumprod = jnp.cumprod(self.alphas, axis=0)
|
||||
|
||||
# At every step in ddim, we are looking into the previous alphas_cumprod
|
||||
# For the final step, there is no previous alphas_cumprod because we are already at 0
|
||||
# `set_alpha_to_one` decides whether we set this parameter simply to one or
|
||||
# whether we use the final alpha of the "non-previous" one.
|
||||
self.final_alpha_cumprod = jnp.array(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
|
||||
|
||||
self.state = DDIMSchedulerState.create(num_train_timesteps=num_train_timesteps)
|
||||
|
||||
def _get_variance(self, timestep, prev_timestep):
|
||||
alpha_prod_t = self.alphas_cumprod[timestep]
|
||||
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
|
||||
beta_prod_t = 1 - alpha_prod_t
|
||||
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
||||
|
||||
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
|
||||
|
||||
return variance
|
||||
|
||||
def set_timesteps(
|
||||
self, state: DDIMSchedulerState, num_inference_steps: int, offset: int = 0
|
||||
) -> DDIMSchedulerState:
|
||||
"""
|
||||
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
|
||||
|
||||
Args:
|
||||
state (`DDIMSchedulerState`):
|
||||
the `FlaxDDIMScheduler` state data class instance.
|
||||
num_inference_steps (`int`):
|
||||
the number of diffusion steps used when generating samples with a pre-trained model.
|
||||
offset (`int`):
|
||||
optional value to shift timestep values up by. A value of 1 is used in stable diffusion for inference.
|
||||
"""
|
||||
step_ratio = self.config.num_train_timesteps // num_inference_steps
|
||||
# creates integer timesteps by multiplying by ratio
|
||||
# casting to int to avoid issues when num_inference_step is power of 3
|
||||
timesteps = (jnp.arange(0, num_inference_steps) * step_ratio).round()[::-1]
|
||||
timesteps = timesteps + offset
|
||||
|
||||
return state.replace(num_inference_steps=num_inference_steps, timesteps=timesteps)
|
||||
|
||||
def step(
|
||||
self,
|
||||
state: DDIMSchedulerState,
|
||||
model_output: jnp.ndarray,
|
||||
timestep: int,
|
||||
sample: jnp.ndarray,
|
||||
key: random.KeyArray,
|
||||
eta: float = 0.0,
|
||||
use_clipped_model_output: bool = False,
|
||||
return_dict: bool = True,
|
||||
) -> Union[FlaxSchedulerOutput, Tuple]:
|
||||
"""
|
||||
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
|
||||
process from the learned model outputs (most often the predicted noise).
|
||||
|
||||
Args:
|
||||
state (`DDIMSchedulerState`): the `FlaxDDIMScheduler` state data class instance.
|
||||
model_output (`jnp.ndarray`): direct output from learned diffusion model.
|
||||
timestep (`int`): current discrete timestep in the diffusion chain.
|
||||
sample (`jnp.ndarray`):
|
||||
current instance of sample being created by diffusion process.
|
||||
key (`random.KeyArray`): a PRNG key.
|
||||
eta (`float`): weight of noise for added noise in diffusion step.
|
||||
use_clipped_model_output (`bool`): TODO
|
||||
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
|
||||
|
||||
Returns:
|
||||
[`FlaxSchedulerOutput`] or `tuple`: [`FlaxSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`.
|
||||
When returning a tuple, the first element is the sample tensor.
|
||||
|
||||
"""
|
||||
if state.num_inference_steps is None:
|
||||
raise ValueError(
|
||||
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
||||
)
|
||||
|
||||
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
|
||||
# Ideally, read DDIM paper in-detail understanding
|
||||
|
||||
# Notation (<variable name> -> <name in paper>
|
||||
# - pred_noise_t -> e_theta(x_t, t)
|
||||
# - pred_original_sample -> f_theta(x_t, t) or x_0
|
||||
# - std_dev_t -> sigma_t
|
||||
# - eta -> η
|
||||
# - pred_sample_direction -> "direction pointing to x_t"
|
||||
# - pred_prev_sample -> "x_t-1"
|
||||
|
||||
# 1. get previous step value (=t-1)
|
||||
prev_timestep = timestep - self.config.num_train_timesteps // state.num_inference_steps
|
||||
|
||||
# 2. compute alphas, betas
|
||||
alpha_prod_t = self.alphas_cumprod[timestep]
|
||||
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
|
||||
beta_prod_t = 1 - alpha_prod_t
|
||||
|
||||
# 3. compute predicted original sample from predicted noise also called
|
||||
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
||||
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
||||
|
||||
# 4. Clip "predicted x_0"
|
||||
if self.config.clip_sample:
|
||||
pred_original_sample = jnp.clip(pred_original_sample, -1, 1)
|
||||
|
||||
# 5. compute variance: "sigma_t(η)" -> see formula (16)
|
||||
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
|
||||
variance = self._get_variance(timestep, prev_timestep)
|
||||
std_dev_t = eta * variance ** (0.5)
|
||||
|
||||
if use_clipped_model_output:
|
||||
# the model_output is always re-derived from the clipped x_0 in Glide
|
||||
model_output = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
|
||||
|
||||
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
||||
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output
|
||||
|
||||
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
||||
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
|
||||
|
||||
if eta > 0:
|
||||
key = random.split(key, num=1)
|
||||
noise = random.normal(key=key, shape=model_output.shape)
|
||||
variance = self._get_variance(timestep, prev_timestep) ** (0.5) * eta * noise
|
||||
|
||||
prev_sample = prev_sample + variance
|
||||
|
||||
if not return_dict:
|
||||
return (prev_sample, state)
|
||||
|
||||
return FlaxSchedulerOutput(prev_sample=prev_sample, state=state)
|
||||
|
||||
def add_noise(
|
||||
self,
|
||||
original_samples: jnp.ndarray,
|
||||
noise: jnp.ndarray,
|
||||
timesteps: jnp.ndarray,
|
||||
) -> jnp.ndarray:
|
||||
sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
|
||||
sqrt_alpha_prod = self.match_shape(sqrt_alpha_prod, original_samples)
|
||||
sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
|
||||
sqrt_one_minus_alpha_prod = self.match_shape(sqrt_one_minus_alpha_prod, original_samples)
|
||||
|
||||
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
|
||||
return noisy_samples
|
||||
|
||||
def __len__(self):
|
||||
return self.config.num_train_timesteps
|
|
@ -148,7 +148,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
|
|||
if variance_type is None:
|
||||
variance_type = self.config.variance_type
|
||||
|
||||
# hacks - were probs added for training stability
|
||||
# hacks - were probably added for training stability
|
||||
if variance_type == "fixed_small":
|
||||
variance = self.clip(variance, min_value=1e-20)
|
||||
# for rl-diffuser https://arxiv.org/abs/2205.09991
|
||||
|
@ -187,7 +187,6 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
|
|||
timestep (`int`): current discrete timestep in the diffusion chain.
|
||||
sample (`torch.FloatTensor` or `np.ndarray`):
|
||||
current instance of sample being created by diffusion process.
|
||||
eta (`float`): weight of noise for added noise in diffusion step.
|
||||
predict_epsilon (`bool`):
|
||||
optional flag to use when model predicts the samples directly instead of the noise, epsilon.
|
||||
generator: random number generator.
|
||||
|
|
|
@ -0,0 +1,277 @@
|
|||
# Copyright 2022 UC Berkely Team and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import flax
|
||||
import jax.numpy as jnp
|
||||
from jax import random
|
||||
|
||||
from ..configuration_utils import ConfigMixin, register_to_config
|
||||
from .scheduling_utils import SchedulerMixin, SchedulerOutput
|
||||
|
||||
|
||||
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> jnp.ndarray:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
(1-beta) over time from t = [0,1].
|
||||
|
||||
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
|
||||
to that part of the diffusion process.
|
||||
|
||||
|
||||
Args:
|
||||
num_diffusion_timesteps (`int`): the number of betas to produce.
|
||||
max_beta (`float`): the maximum beta to use; use values lower than 1 to
|
||||
prevent singularities.
|
||||
|
||||
Returns:
|
||||
betas (`jnp.ndarray`): the betas used by the scheduler to step the model outputs
|
||||
"""
|
||||
|
||||
def alpha_bar(time_step):
|
||||
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2
|
||||
|
||||
betas = []
|
||||
for i in range(num_diffusion_timesteps):
|
||||
t1 = i / num_diffusion_timesteps
|
||||
t2 = (i + 1) / num_diffusion_timesteps
|
||||
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
||||
return jnp.array(betas, dtype=jnp.float32)
|
||||
|
||||
|
||||
@flax.struct.dataclass
|
||||
class DDPMSchedulerState:
|
||||
# setable values
|
||||
timesteps: jnp.ndarray
|
||||
num_inference_steps: Optional[int] = None
|
||||
|
||||
@classmethod
|
||||
def create(cls, num_train_timesteps: int):
|
||||
return cls(timesteps=jnp.arange(0, num_train_timesteps)[::-1])
|
||||
|
||||
|
||||
@dataclass
|
||||
class FlaxSchedulerOutput(SchedulerOutput):
|
||||
state: DDPMSchedulerState
|
||||
|
||||
|
||||
class FlaxDDPMScheduler(SchedulerMixin, ConfigMixin):
|
||||
"""
|
||||
Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and
|
||||
Langevin dynamics sampling.
|
||||
|
||||
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
|
||||
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
|
||||
[`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
|
||||
[`~ConfigMixin.from_config`] functions.
|
||||
|
||||
For more details, see the original paper: https://arxiv.org/abs/2006.11239
|
||||
|
||||
Args:
|
||||
num_train_timesteps (`int`): number of diffusion steps used to train the model.
|
||||
beta_start (`float`): the starting `beta` value of inference.
|
||||
beta_end (`float`): the final `beta` value.
|
||||
beta_schedule (`str`):
|
||||
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
||||
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
|
||||
trained_betas (`np.ndarray`, optional):
|
||||
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
|
||||
variance_type (`str`):
|
||||
options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
|
||||
`fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
|
||||
clip_sample (`bool`, default `True`):
|
||||
option to clip predicted sample between -1 and 1 for numerical stability.
|
||||
tensor_format (`str`): whether the scheduler expects pytorch or numpy arrays.
|
||||
|
||||
"""
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
num_train_timesteps: int = 1000,
|
||||
beta_start: float = 0.0001,
|
||||
beta_end: float = 0.02,
|
||||
beta_schedule: str = "linear",
|
||||
trained_betas: Optional[jnp.ndarray] = None,
|
||||
variance_type: str = "fixed_small",
|
||||
clip_sample: bool = True,
|
||||
):
|
||||
if trained_betas is not None:
|
||||
self.betas = jnp.asarray(trained_betas)
|
||||
elif beta_schedule == "linear":
|
||||
self.betas = jnp.linspace(beta_start, beta_end, num_train_timesteps, dtype=jnp.float32)
|
||||
elif beta_schedule == "scaled_linear":
|
||||
# this schedule is very specific to the latent diffusion model.
|
||||
self.betas = jnp.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=jnp.float32) ** 2
|
||||
elif beta_schedule == "squaredcos_cap_v2":
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
||||
|
||||
self.alphas = 1.0 - self.betas
|
||||
self.alphas_cumprod = jnp.cumprod(self.alphas, axis=0)
|
||||
self.one = jnp.array(1.0)
|
||||
|
||||
self.state = DDPMSchedulerState.create(num_train_timesteps=num_train_timesteps)
|
||||
|
||||
self.variance_type = variance_type
|
||||
|
||||
def set_timesteps(self, state: DDPMSchedulerState, num_inference_steps: int) -> DDPMSchedulerState:
|
||||
"""
|
||||
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
|
||||
|
||||
Args:
|
||||
state (`DDIMSchedulerState`):
|
||||
the `FlaxDDPMScheduler` state data class instance.
|
||||
num_inference_steps (`int`):
|
||||
the number of diffusion steps used when generating samples with a pre-trained model.
|
||||
"""
|
||||
num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps)
|
||||
timesteps = jnp.arange(
|
||||
0, self.config.num_train_timesteps, self.config.num_train_timesteps // num_inference_steps
|
||||
)[::-1]
|
||||
return state.replace(num_inference_steps=num_inference_steps, timesteps=timesteps)
|
||||
|
||||
def _get_variance(self, t, predicted_variance=None, variance_type=None):
|
||||
alpha_prod_t = self.alphas_cumprod[t]
|
||||
alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
|
||||
|
||||
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
|
||||
# and sample from it to get previous sample
|
||||
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
|
||||
variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * self.betas[t]
|
||||
|
||||
if variance_type is None:
|
||||
variance_type = self.config.variance_type
|
||||
|
||||
# hacks - were probably added for training stability
|
||||
if variance_type == "fixed_small":
|
||||
variance = jnp.clip(variance, a_min=1e-20)
|
||||
# for rl-diffuser https://arxiv.org/abs/2205.09991
|
||||
elif variance_type == "fixed_small_log":
|
||||
variance = jnp.log(jnp.clip(variance, a_min=1e-20))
|
||||
elif variance_type == "fixed_large":
|
||||
variance = self.betas[t]
|
||||
elif variance_type == "fixed_large_log":
|
||||
# Glide max_log
|
||||
variance = jnp.log(self.betas[t])
|
||||
elif variance_type == "learned":
|
||||
return predicted_variance
|
||||
elif variance_type == "learned_range":
|
||||
min_log = variance
|
||||
max_log = self.betas[t]
|
||||
frac = (predicted_variance + 1) / 2
|
||||
variance = frac * max_log + (1 - frac) * min_log
|
||||
|
||||
return variance
|
||||
|
||||
def step(
|
||||
self,
|
||||
state: DDPMSchedulerState,
|
||||
model_output: jnp.ndarray,
|
||||
timestep: int,
|
||||
sample: jnp.ndarray,
|
||||
key: random.KeyArray,
|
||||
predict_epsilon: bool = True,
|
||||
return_dict: bool = True,
|
||||
) -> Union[FlaxSchedulerOutput, Tuple]:
|
||||
"""
|
||||
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
|
||||
process from the learned model outputs (most often the predicted noise).
|
||||
|
||||
Args:
|
||||
state (`DDPMSchedulerState`): the `FlaxDDPMScheduler` state data class instance.
|
||||
model_output (`jnp.ndarray`): direct output from learned diffusion model.
|
||||
timestep (`int`): current discrete timestep in the diffusion chain.
|
||||
sample (`jnp.ndarray`):
|
||||
current instance of sample being created by diffusion process.
|
||||
key (`random.KeyArray`): a PRNG key.
|
||||
predict_epsilon (`bool`):
|
||||
optional flag to use when model predicts the samples directly instead of the noise, epsilon.
|
||||
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
|
||||
|
||||
Returns:
|
||||
[`FlaxSchedulerOutput`] or `tuple`: [`FlaxSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`.
|
||||
When returning a tuple, the first element is the sample tensor.
|
||||
|
||||
"""
|
||||
t = timestep
|
||||
|
||||
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
|
||||
model_output, predicted_variance = jnp.split(model_output, sample.shape[1], axis=1)
|
||||
else:
|
||||
predicted_variance = None
|
||||
|
||||
# 1. compute alphas, betas
|
||||
alpha_prod_t = self.alphas_cumprod[t]
|
||||
alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
|
||||
beta_prod_t = 1 - alpha_prod_t
|
||||
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
||||
|
||||
# 2. compute predicted original sample from predicted noise also called
|
||||
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
|
||||
if predict_epsilon:
|
||||
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
||||
else:
|
||||
pred_original_sample = model_output
|
||||
|
||||
# 3. Clip "predicted x_0"
|
||||
if self.config.clip_sample:
|
||||
pred_original_sample = jnp.clip(pred_original_sample, -1, 1)
|
||||
|
||||
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
|
||||
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
|
||||
pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * self.betas[t]) / beta_prod_t
|
||||
current_sample_coeff = self.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t
|
||||
|
||||
# 5. Compute predicted previous sample µ_t
|
||||
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
|
||||
pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
|
||||
|
||||
# 6. Add noise
|
||||
variance = 0
|
||||
if t > 0:
|
||||
key = random.split(key, num=1)
|
||||
noise = random.normal(key=key, shape=model_output.shape)
|
||||
variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * noise
|
||||
|
||||
pred_prev_sample = pred_prev_sample + variance
|
||||
|
||||
if not return_dict:
|
||||
return (pred_prev_sample, state)
|
||||
|
||||
return FlaxSchedulerOutput(prev_sample=pred_prev_sample, state=state)
|
||||
|
||||
def add_noise(
|
||||
self,
|
||||
original_samples: jnp.ndarray,
|
||||
noise: jnp.ndarray,
|
||||
timesteps: jnp.ndarray,
|
||||
) -> jnp.ndarray:
|
||||
sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
|
||||
sqrt_alpha_prod = self.match_shape(sqrt_alpha_prod, original_samples)
|
||||
sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
|
||||
sqrt_one_minus_alpha_prod = self.match_shape(sqrt_one_minus_alpha_prod, original_samples)
|
||||
|
||||
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
|
||||
return noisy_samples
|
||||
|
||||
def __len__(self):
|
||||
return self.config.num_train_timesteps
|
|
@ -105,7 +105,10 @@ class KarrasVeScheduler(SchedulerMixin, ConfigMixin):
|
|||
self.num_inference_steps = num_inference_steps
|
||||
self.timesteps = np.arange(0, self.num_inference_steps)[::-1].copy()
|
||||
self.schedule = [
|
||||
(self.sigma_max * (self.sigma_min**2 / self.sigma_max**2) ** (i / (num_inference_steps - 1)))
|
||||
(
|
||||
self.config.sigma_max
|
||||
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
|
||||
)
|
||||
for i in self.timesteps
|
||||
]
|
||||
self.schedule = np.array(self.schedule, dtype=np.float32)
|
||||
|
@ -121,13 +124,13 @@ class KarrasVeScheduler(SchedulerMixin, ConfigMixin):
|
|||
|
||||
TODO Args:
|
||||
"""
|
||||
if self.s_min <= sigma <= self.s_max:
|
||||
gamma = min(self.s_churn / self.num_inference_steps, 2**0.5 - 1)
|
||||
if self.config.s_min <= sigma <= self.config.s_max:
|
||||
gamma = min(self.config.s_churn / self.num_inference_steps, 2**0.5 - 1)
|
||||
else:
|
||||
gamma = 0
|
||||
|
||||
# sample eps ~ N(0, S_noise^2 * I)
|
||||
eps = self.s_noise * torch.randn(sample.shape, generator=generator).to(sample.device)
|
||||
eps = self.config.s_noise * torch.randn(sample.shape, generator=generator).to(sample.device)
|
||||
sigma_hat = sigma + gamma * sigma
|
||||
sample_hat = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
|
||||
|
||||
|
|
|
@ -0,0 +1,228 @@
|
|||
# Copyright 2022 NVIDIA and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import flax
|
||||
import jax.numpy as jnp
|
||||
from jax import random
|
||||
|
||||
from ..configuration_utils import ConfigMixin, register_to_config
|
||||
from ..utils import BaseOutput
|
||||
from .scheduling_utils import SchedulerMixin
|
||||
|
||||
|
||||
@flax.struct.dataclass
|
||||
class KarrasVeSchedulerState:
|
||||
# setable values
|
||||
num_inference_steps: Optional[int] = None
|
||||
timesteps: Optional[jnp.ndarray] = None
|
||||
schedule: Optional[jnp.ndarray] = None # sigma(t_i)
|
||||
|
||||
@classmethod
|
||||
def create(cls):
|
||||
return cls()
|
||||
|
||||
|
||||
@dataclass
|
||||
class FlaxKarrasVeOutput(BaseOutput):
|
||||
"""
|
||||
Output class for the scheduler's step function output.
|
||||
|
||||
Args:
|
||||
prev_sample (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)` for images):
|
||||
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
|
||||
denoising loop.
|
||||
derivative (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)` for images):
|
||||
Derivate of predicted original image sample (x_0).
|
||||
state (`KarrasVeSchedulerState`): the `FlaxKarrasVeScheduler` state data class.
|
||||
"""
|
||||
|
||||
prev_sample: jnp.ndarray
|
||||
derivative: jnp.ndarray
|
||||
state: KarrasVeSchedulerState
|
||||
|
||||
|
||||
class FlaxKarrasVeScheduler(SchedulerMixin, ConfigMixin):
|
||||
"""
|
||||
Stochastic sampling from Karras et al. [1] tailored to the Variance-Expanding (VE) models [2]. Use Algorithm 2 and
|
||||
the VE column of Table 1 from [1] for reference.
|
||||
|
||||
[1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models."
|
||||
https://arxiv.org/abs/2206.00364 [2] Song, Yang, et al. "Score-based generative modeling through stochastic
|
||||
differential equations." https://arxiv.org/abs/2011.13456
|
||||
|
||||
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
|
||||
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
|
||||
[`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
|
||||
[`~ConfigMixin.from_config`] functions.
|
||||
|
||||
For more details on the parameters, see the original paper's Appendix E.: "Elucidating the Design Space of
|
||||
Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364. The grid search values used to find the
|
||||
optimal {s_noise, s_churn, s_min, s_max} for a specific model are described in Table 5 of the paper.
|
||||
|
||||
Args:
|
||||
sigma_min (`float`): minimum noise magnitude
|
||||
sigma_max (`float`): maximum noise magnitude
|
||||
s_noise (`float`): the amount of additional noise to counteract loss of detail during sampling.
|
||||
A reasonable range is [1.000, 1.011].
|
||||
s_churn (`float`): the parameter controlling the overall amount of stochasticity.
|
||||
A reasonable range is [0, 100].
|
||||
s_min (`float`): the start value of the sigma range where we add noise (enable stochasticity).
|
||||
A reasonable range is [0, 10].
|
||||
s_max (`float`): the end value of the sigma range where we add noise.
|
||||
A reasonable range is [0.2, 80].
|
||||
"""
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
sigma_min: float = 0.02,
|
||||
sigma_max: float = 100,
|
||||
s_noise: float = 1.007,
|
||||
s_churn: float = 80,
|
||||
s_min: float = 0.05,
|
||||
s_max: float = 50,
|
||||
):
|
||||
self.state = KarrasVeSchedulerState.create()
|
||||
|
||||
def set_timesteps(self, state: KarrasVeSchedulerState, num_inference_steps: int) -> KarrasVeSchedulerState:
|
||||
"""
|
||||
Sets the continuous timesteps used for the diffusion chain. Supporting function to be run before inference.
|
||||
|
||||
Args:
|
||||
state (`KarrasVeSchedulerState`):
|
||||
the `FlaxKarrasVeScheduler` state data class.
|
||||
num_inference_steps (`int`):
|
||||
the number of diffusion steps used when generating samples with a pre-trained model.
|
||||
|
||||
"""
|
||||
timesteps = jnp.arange(0, num_inference_steps)[::-1].copy()
|
||||
schedule = [
|
||||
(
|
||||
self.config.sigma_max
|
||||
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
|
||||
)
|
||||
for i in timesteps
|
||||
]
|
||||
|
||||
return state.replace(
|
||||
num_inference_steps=num_inference_steps,
|
||||
schedule=jnp.array(schedule, dtype=jnp.float32),
|
||||
timesteps=timesteps,
|
||||
)
|
||||
|
||||
def add_noise_to_input(
|
||||
self,
|
||||
state: KarrasVeSchedulerState,
|
||||
sample: jnp.ndarray,
|
||||
sigma: float,
|
||||
key: random.KeyArray,
|
||||
) -> Tuple[jnp.ndarray, float]:
|
||||
"""
|
||||
Explicit Langevin-like "churn" step of adding noise to the sample according to a factor gamma_i ≥ 0 to reach a
|
||||
higher noise level sigma_hat = sigma_i + gamma_i*sigma_i.
|
||||
|
||||
TODO Args:
|
||||
"""
|
||||
if self.config.s_min <= sigma <= self.config.s_max:
|
||||
gamma = min(self.config.s_churn / state.num_inference_steps, 2**0.5 - 1)
|
||||
else:
|
||||
gamma = 0
|
||||
|
||||
# sample eps ~ N(0, S_noise^2 * I)
|
||||
key = random.split(key, num=1)
|
||||
eps = self.config.s_noise * random.normal(key=key, shape=sample.shape)
|
||||
sigma_hat = sigma + gamma * sigma
|
||||
sample_hat = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
|
||||
|
||||
return sample_hat, sigma_hat
|
||||
|
||||
def step(
|
||||
self,
|
||||
state: KarrasVeSchedulerState,
|
||||
model_output: jnp.ndarray,
|
||||
sigma_hat: float,
|
||||
sigma_prev: float,
|
||||
sample_hat: jnp.ndarray,
|
||||
return_dict: bool = True,
|
||||
) -> Union[FlaxKarrasVeOutput, Tuple]:
|
||||
"""
|
||||
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
|
||||
process from the learned model outputs (most often the predicted noise).
|
||||
|
||||
Args:
|
||||
state (`KarrasVeSchedulerState`): the `FlaxKarrasVeScheduler` state data class.
|
||||
model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model.
|
||||
sigma_hat (`float`): TODO
|
||||
sigma_prev (`float`): TODO
|
||||
sample_hat (`torch.FloatTensor` or `np.ndarray`): TODO
|
||||
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
|
||||
|
||||
Returns:
|
||||
[`~schedulers.scheduling_karras_ve_flax.FlaxKarrasVeOutput`] or `tuple`: Updated sample in the diffusion
|
||||
chain and derivative. [`~schedulers.scheduling_karras_ve_flax.FlaxKarrasVeOutput`] if `return_dict` is
|
||||
True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
|
||||
"""
|
||||
|
||||
pred_original_sample = sample_hat + sigma_hat * model_output
|
||||
derivative = (sample_hat - pred_original_sample) / sigma_hat
|
||||
sample_prev = sample_hat + (sigma_prev - sigma_hat) * derivative
|
||||
|
||||
if not return_dict:
|
||||
return (sample_prev, derivative, state)
|
||||
|
||||
return FlaxKarrasVeOutput(prev_sample=sample_prev, derivative=derivative, state=state)
|
||||
|
||||
def step_correct(
|
||||
self,
|
||||
state: KarrasVeSchedulerState,
|
||||
model_output: jnp.ndarray,
|
||||
sigma_hat: float,
|
||||
sigma_prev: float,
|
||||
sample_hat: jnp.ndarray,
|
||||
sample_prev: jnp.ndarray,
|
||||
derivative: jnp.ndarray,
|
||||
return_dict: bool = True,
|
||||
) -> Union[FlaxKarrasVeOutput, Tuple]:
|
||||
"""
|
||||
Correct the predicted sample based on the output model_output of the network. TODO complete description
|
||||
|
||||
Args:
|
||||
state (`KarrasVeSchedulerState`): the `FlaxKarrasVeScheduler` state data class.
|
||||
model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model.
|
||||
sigma_hat (`float`): TODO
|
||||
sigma_prev (`float`): TODO
|
||||
sample_hat (`torch.FloatTensor` or `np.ndarray`): TODO
|
||||
sample_prev (`torch.FloatTensor` or `np.ndarray`): TODO
|
||||
derivative (`torch.FloatTensor` or `np.ndarray`): TODO
|
||||
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
|
||||
|
||||
Returns:
|
||||
prev_sample (TODO): updated sample in the diffusion chain. derivative (TODO): TODO
|
||||
|
||||
"""
|
||||
pred_original_sample = sample_prev + sigma_prev * model_output
|
||||
derivative_corr = (sample_prev - pred_original_sample) / sigma_prev
|
||||
sample_prev = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
|
||||
|
||||
if not return_dict:
|
||||
return (sample_prev, derivative, state)
|
||||
|
||||
return FlaxKarrasVeOutput(prev_sample=sample_prev, derivative=derivative, state=state)
|
||||
|
||||
def add_noise(self, original_samples, noise, timesteps):
|
||||
raise NotImplementedError()
|
|
@ -113,7 +113,7 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|||
the number of diffusion steps used when generating samples with a pre-trained model.
|
||||
"""
|
||||
self.num_inference_steps = num_inference_steps
|
||||
self.timesteps = np.linspace(self.num_train_timesteps - 1, 0, num_inference_steps, dtype=float)
|
||||
self.timesteps = np.linspace(self.config.num_train_timesteps - 1, 0, num_inference_steps, dtype=float)
|
||||
|
||||
low_idx = np.floor(self.timesteps).astype(int)
|
||||
high_idx = np.ceil(self.timesteps).astype(int)
|
||||
|
|
|
@ -0,0 +1,207 @@
|
|||
# Copyright 2022 Katherine Crowson and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import flax
|
||||
import jax.numpy as jnp
|
||||
from scipy import integrate
|
||||
|
||||
from ..configuration_utils import ConfigMixin, register_to_config
|
||||
from .scheduling_utils import SchedulerMixin, SchedulerOutput
|
||||
|
||||
|
||||
@flax.struct.dataclass
|
||||
class LMSDiscreteSchedulerState:
|
||||
# setable values
|
||||
num_inference_steps: Optional[int] = None
|
||||
timesteps: Optional[jnp.ndarray] = None
|
||||
sigmas: Optional[jnp.ndarray] = None
|
||||
derivatives: jnp.ndarray = jnp.array([])
|
||||
|
||||
@classmethod
|
||||
def create(cls, num_train_timesteps: int, sigmas: jnp.ndarray):
|
||||
return cls(timesteps=jnp.arange(0, num_train_timesteps)[::-1], sigmas=sigmas)
|
||||
|
||||
|
||||
@dataclass
|
||||
class FlaxSchedulerOutput(SchedulerOutput):
|
||||
state: LMSDiscreteSchedulerState
|
||||
|
||||
|
||||
class FlaxLMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
"""
|
||||
Linear Multistep Scheduler for discrete beta schedules. Based on the original k-diffusion implementation by
|
||||
Katherine Crowson:
|
||||
https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L181
|
||||
|
||||
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
|
||||
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
|
||||
[`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
|
||||
[`~ConfigMixin.from_config`] functions.
|
||||
|
||||
Args:
|
||||
num_train_timesteps (`int`): number of diffusion steps used to train the model.
|
||||
beta_start (`float`): the starting `beta` value of inference.
|
||||
beta_end (`float`): the final `beta` value.
|
||||
beta_schedule (`str`):
|
||||
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
||||
`linear` or `scaled_linear`.
|
||||
trained_betas (`jnp.ndarray`, optional):
|
||||
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
|
||||
options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
|
||||
`fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
|
||||
"""
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
num_train_timesteps: int = 1000,
|
||||
beta_start: float = 0.0001,
|
||||
beta_end: float = 0.02,
|
||||
beta_schedule: str = "linear",
|
||||
trained_betas: Optional[jnp.ndarray] = None,
|
||||
):
|
||||
if trained_betas is not None:
|
||||
self.betas = jnp.asarray(trained_betas)
|
||||
if beta_schedule == "linear":
|
||||
self.betas = jnp.linspace(beta_start, beta_end, num_train_timesteps, dtype=jnp.float32)
|
||||
elif beta_schedule == "scaled_linear":
|
||||
# this schedule is very specific to the latent diffusion model.
|
||||
self.betas = jnp.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=jnp.float32) ** 2
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
||||
|
||||
self.alphas = 1.0 - self.betas
|
||||
self.alphas_cumprod = jnp.cumprod(self.alphas, axis=0)
|
||||
|
||||
self.state = LMSDiscreteSchedulerState.create(
|
||||
num_train_timesteps=num_train_timesteps, sigmas=((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5
|
||||
)
|
||||
|
||||
def get_lms_coefficient(self, state, order, t, current_order):
|
||||
"""
|
||||
Compute a linear multistep coefficient.
|
||||
|
||||
Args:
|
||||
order (TODO):
|
||||
t (TODO):
|
||||
current_order (TODO):
|
||||
"""
|
||||
|
||||
def lms_derivative(tau):
|
||||
prod = 1.0
|
||||
for k in range(order):
|
||||
if current_order == k:
|
||||
continue
|
||||
prod *= (tau - state.sigmas[t - k]) / (state.sigmas[t - current_order] - state.sigmas[t - k])
|
||||
return prod
|
||||
|
||||
integrated_coeff = integrate.quad(lms_derivative, state.sigmas[t], state.sigmas[t + 1], epsrel=1e-4)[0]
|
||||
|
||||
return integrated_coeff
|
||||
|
||||
def set_timesteps(self, state: LMSDiscreteSchedulerState, num_inference_steps: int) -> LMSDiscreteSchedulerState:
|
||||
"""
|
||||
Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.
|
||||
|
||||
Args:
|
||||
state (`LMSDiscreteSchedulerState`):
|
||||
the `FlaxLMSDiscreteScheduler` state data class instance.
|
||||
num_inference_steps (`int`):
|
||||
the number of diffusion steps used when generating samples with a pre-trained model.
|
||||
"""
|
||||
timesteps = jnp.linspace(self.config.num_train_timesteps - 1, 0, num_inference_steps, dtype=jnp.float32)
|
||||
|
||||
low_idx = jnp.floor(timesteps).astype(int)
|
||||
high_idx = jnp.ceil(timesteps).astype(int)
|
||||
frac = jnp.mod(timesteps, 1.0)
|
||||
sigmas = jnp.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
|
||||
sigmas = (1 - frac) * sigmas[low_idx] + frac * sigmas[high_idx]
|
||||
sigmas = jnp.concatenate([sigmas, jnp.array([0.0])]).astype(jnp.float32)
|
||||
|
||||
return state.replace(
|
||||
num_inference_steps=num_inference_steps,
|
||||
timesteps=timesteps,
|
||||
derivatives=jnp.array([]),
|
||||
sigmas=sigmas,
|
||||
)
|
||||
|
||||
def step(
|
||||
self,
|
||||
state: LMSDiscreteSchedulerState,
|
||||
model_output: jnp.ndarray,
|
||||
timestep: int,
|
||||
sample: jnp.ndarray,
|
||||
order: int = 4,
|
||||
return_dict: bool = True,
|
||||
) -> Union[SchedulerOutput, Tuple]:
|
||||
"""
|
||||
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
|
||||
process from the learned model outputs (most often the predicted noise).
|
||||
|
||||
Args:
|
||||
state (`LMSDiscreteSchedulerState`): the `FlaxLMSDiscreteScheduler` state data class instance.
|
||||
model_output (`jnp.ndarray`): direct output from learned diffusion model.
|
||||
timestep (`int`): current discrete timestep in the diffusion chain.
|
||||
sample (`jnp.ndarray`):
|
||||
current instance of sample being created by diffusion process.
|
||||
order: coefficient for multi-step inference.
|
||||
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
|
||||
|
||||
Returns:
|
||||
[`FlaxSchedulerOutput`] or `tuple`: [`FlaxSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`.
|
||||
When returning a tuple, the first element is the sample tensor.
|
||||
|
||||
"""
|
||||
sigma = state.sigmas[timestep]
|
||||
|
||||
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
|
||||
pred_original_sample = sample - sigma * model_output
|
||||
|
||||
# 2. Convert to an ODE derivative
|
||||
derivative = (sample - pred_original_sample) / sigma
|
||||
state = state.replace(derivatives=state.derivatives.append(derivative))
|
||||
if len(state.derivatives) > order:
|
||||
state = state.replace(derivatives=state.derivatives.pop(0))
|
||||
|
||||
# 3. Compute linear multistep coefficients
|
||||
order = min(timestep + 1, order)
|
||||
lms_coeffs = [self.get_lms_coefficient(state, order, timestep, curr_order) for curr_order in range(order)]
|
||||
|
||||
# 4. Compute previous sample based on the derivatives path
|
||||
prev_sample = sample + sum(
|
||||
coeff * derivative for coeff, derivative in zip(lms_coeffs, reversed(state.derivatives))
|
||||
)
|
||||
|
||||
if not return_dict:
|
||||
return (prev_sample, state)
|
||||
|
||||
return FlaxSchedulerOutput(prev_sample=prev_sample, state=state)
|
||||
|
||||
def add_noise(
|
||||
self,
|
||||
state: LMSDiscreteSchedulerState,
|
||||
original_samples: jnp.ndarray,
|
||||
noise: jnp.ndarray,
|
||||
timesteps: jnp.ndarray,
|
||||
) -> jnp.ndarray:
|
||||
sigmas = self.match_shape(state.sigmas[timesteps], noise)
|
||||
noisy_samples = original_samples + noise * sigmas
|
||||
|
||||
return noisy_samples
|
||||
|
||||
def __len__(self):
|
||||
return self.config.num_train_timesteps
|
|
@ -108,8 +108,6 @@ class PNDMScheduler(SchedulerMixin, ConfigMixin):
|
|||
self.alphas = 1.0 - self.betas
|
||||
self.alphas_cumprod = np.cumprod(self.alphas, axis=0)
|
||||
|
||||
self.one = np.array(1.0)
|
||||
|
||||
# For now we only support F-PNDM, i.e. the runge-kutta method
|
||||
# For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
|
||||
# mainly at formula (9), (12), (13) and the Algorithm 2.
|
||||
|
|
|
@ -25,7 +25,7 @@ from ..configuration_utils import ConfigMixin, register_to_config
|
|||
from .scheduling_utils import SchedulerMixin, SchedulerOutput
|
||||
|
||||
|
||||
def betas_for_alpha_bar(num_diffusion_timesteps: int, max_beta=0.999):
|
||||
def betas_for_alpha_bar(num_diffusion_timesteps: int, max_beta=0.999) -> jnp.ndarray:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
(1-beta) over time from t = [0,1].
|
||||
|
@ -40,7 +40,7 @@ def betas_for_alpha_bar(num_diffusion_timesteps: int, max_beta=0.999):
|
|||
prevent singularities.
|
||||
|
||||
Returns:
|
||||
betas (`jnp.array`): the betas used by the scheduler to step the model outputs
|
||||
betas (`jnp.ndarray`): the betas used by the scheduler to step the model outputs
|
||||
"""
|
||||
|
||||
def alpha_bar(time_step):
|
||||
|
@ -56,36 +56,23 @@ def betas_for_alpha_bar(num_diffusion_timesteps: int, max_beta=0.999):
|
|||
|
||||
@flax.struct.dataclass
|
||||
class PNDMSchedulerState:
|
||||
betas: jnp.array
|
||||
|
||||
# setable values
|
||||
_timesteps: jnp.array
|
||||
_timesteps: jnp.ndarray
|
||||
num_inference_steps: Optional[int] = None
|
||||
_offset: int = 0
|
||||
prk_timesteps: Optional[jnp.array] = None
|
||||
plms_timesteps: Optional[jnp.array] = None
|
||||
timesteps: Optional[jnp.array] = None
|
||||
prk_timesteps: Optional[jnp.ndarray] = None
|
||||
plms_timesteps: Optional[jnp.ndarray] = None
|
||||
timesteps: Optional[jnp.ndarray] = None
|
||||
|
||||
# running values
|
||||
cur_model_output: Optional[jnp.ndarray] = None
|
||||
counter: int = 0
|
||||
cur_sample: Optional[jnp.ndarray] = None
|
||||
ets: jnp.array = jnp.array([])
|
||||
|
||||
@property
|
||||
def alphas(self) -> jnp.array:
|
||||
return 1.0 - self.betas
|
||||
|
||||
@property
|
||||
def alphas_cumprod(self) -> jnp.array:
|
||||
return jnp.cumprod(self.alphas, axis=0)
|
||||
ets: jnp.ndarray = jnp.array([])
|
||||
|
||||
@classmethod
|
||||
def create(cls, betas: jnp.array, num_train_timesteps: int):
|
||||
return cls(
|
||||
betas=betas,
|
||||
_timesteps=jnp.arange(0, num_train_timesteps)[::-1],
|
||||
)
|
||||
def create(cls, num_train_timesteps: int):
|
||||
return cls(_timesteps=jnp.arange(0, num_train_timesteps)[::-1])
|
||||
|
||||
|
||||
@dataclass
|
||||
|
@ -112,7 +99,7 @@ class FlaxPNDMScheduler(SchedulerMixin, ConfigMixin):
|
|||
beta_schedule (`str`):
|
||||
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
||||
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
|
||||
trained_betas (`np.ndarray`, optional):
|
||||
trained_betas (`jnp.ndarray`, optional):
|
||||
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
|
||||
skip_prk_steps (`bool`):
|
||||
allows the scheduler to skip the Runge-Kutta steps that are defined in the original paper as being required
|
||||
|
@ -126,28 +113,31 @@ class FlaxPNDMScheduler(SchedulerMixin, ConfigMixin):
|
|||
beta_start: float = 0.0001,
|
||||
beta_end: float = 0.02,
|
||||
beta_schedule: str = "linear",
|
||||
trained_betas: Optional[jnp.array] = None,
|
||||
trained_betas: Optional[jnp.ndarray] = None,
|
||||
skip_prk_steps: bool = False,
|
||||
):
|
||||
if trained_betas is not None:
|
||||
betas = jnp.asarray(trained_betas)
|
||||
self.betas = jnp.asarray(trained_betas)
|
||||
if beta_schedule == "linear":
|
||||
betas = jnp.linspace(beta_start, beta_end, num_train_timesteps, dtype=jnp.float32)
|
||||
self.betas = jnp.linspace(beta_start, beta_end, num_train_timesteps, dtype=jnp.float32)
|
||||
elif beta_schedule == "scaled_linear":
|
||||
# this schedule is very specific to the latent diffusion model.
|
||||
betas = jnp.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=jnp.float32) ** 2
|
||||
self.betas = jnp.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=jnp.float32) ** 2
|
||||
elif beta_schedule == "squaredcos_cap_v2":
|
||||
# Glide cosine schedule
|
||||
betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
||||
|
||||
self.alphas = 1.0 - self.betas
|
||||
self.alphas_cumprod = jnp.cumprod(self.alphas, axis=0)
|
||||
|
||||
# For now we only support F-PNDM, i.e. the runge-kutta method
|
||||
# For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
|
||||
# mainly at formula (9), (12), (13) and the Algorithm 2.
|
||||
self.pndm_order = 4
|
||||
|
||||
self.state = PNDMSchedulerState.create(betas=betas, num_train_timesteps=num_train_timesteps)
|
||||
self.state = PNDMSchedulerState.create(num_train_timesteps=num_train_timesteps)
|
||||
|
||||
def set_timesteps(
|
||||
self, state: PNDMSchedulerState, num_inference_steps: int, offset: int = 0
|
||||
|
@ -157,7 +147,7 @@ class FlaxPNDMScheduler(SchedulerMixin, ConfigMixin):
|
|||
|
||||
Args:
|
||||
state (`PNDMSchedulerState`):
|
||||
the PNDMScheduler state data class instance.
|
||||
the `FlaxPNDMScheduler` state data class instance.
|
||||
num_inference_steps (`int`):
|
||||
the number of diffusion steps used when generating samples with a pre-trained model.
|
||||
offset (`int`):
|
||||
|
@ -165,7 +155,7 @@ class FlaxPNDMScheduler(SchedulerMixin, ConfigMixin):
|
|||
"""
|
||||
step_ratio = self.config.num_train_timesteps // num_inference_steps
|
||||
# creates integer timesteps by multiplying by ratio
|
||||
# casting to int to avoid issues when num_inference_step is power of 3
|
||||
# rounding to avoid issues when num_inference_step is power of 3
|
||||
_timesteps = (jnp.arange(0, num_inference_steps) * step_ratio).round()[::-1]
|
||||
_timesteps = _timesteps + offset
|
||||
|
||||
|
@ -212,7 +202,7 @@ class FlaxPNDMScheduler(SchedulerMixin, ConfigMixin):
|
|||
This function calls `step_prk()` or `step_plms()` depending on the internal variable `counter`.
|
||||
|
||||
Args:
|
||||
state (`PNDMSchedulerState`): the PNDMScheduler state data class instance.
|
||||
state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance.
|
||||
model_output (`jnp.ndarray`): direct output from learned diffusion model.
|
||||
timestep (`int`): current discrete timestep in the diffusion chain.
|
||||
sample (`jnp.ndarray`):
|
||||
|
@ -246,7 +236,7 @@ class FlaxPNDMScheduler(SchedulerMixin, ConfigMixin):
|
|||
solution to the differential equation.
|
||||
|
||||
Args:
|
||||
state (`PNDMSchedulerState`): the PNDMScheduler state data class instance.
|
||||
state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance.
|
||||
model_output (`jnp.ndarray`): direct output from learned diffusion model.
|
||||
timestep (`int`): current discrete timestep in the diffusion chain.
|
||||
sample (`jnp.ndarray`):
|
||||
|
@ -268,24 +258,24 @@ class FlaxPNDMScheduler(SchedulerMixin, ConfigMixin):
|
|||
timestep = state.prk_timesteps[state.counter // 4 * 4]
|
||||
|
||||
if state.counter % 4 == 0:
|
||||
state.replace(
|
||||
state = state.replace(
|
||||
cur_model_output=state.cur_model_output + 1 / 6 * model_output,
|
||||
ets=state.ets.append(model_output),
|
||||
cur_sample=sample,
|
||||
)
|
||||
elif (self.counter - 1) % 4 == 0:
|
||||
state.replace(cur_model_output=state.cur_model_output + 1 / 3 * model_output)
|
||||
state = state.replace(cur_model_output=state.cur_model_output + 1 / 3 * model_output)
|
||||
elif (self.counter - 2) % 4 == 0:
|
||||
state.replace(cur_model_output=state.cur_model_output + 1 / 3 * model_output)
|
||||
state = state.replace(cur_model_output=state.cur_model_output + 1 / 3 * model_output)
|
||||
elif (self.counter - 3) % 4 == 0:
|
||||
model_output = state.cur_model_output + 1 / 6 * model_output
|
||||
state.replace(cur_model_output=0)
|
||||
state = state.replace(cur_model_output=0)
|
||||
|
||||
# cur_sample should not be `None`
|
||||
cur_sample = state.cur_sample if state.cur_sample is not None else sample
|
||||
|
||||
prev_sample = self._get_prev_sample(cur_sample, timestep, prev_timestep, model_output, state=state)
|
||||
state.replace(counter=state.counter + 1)
|
||||
state = state.replace(counter=state.counter + 1)
|
||||
|
||||
if not return_dict:
|
||||
return (prev_sample, state)
|
||||
|
@ -305,7 +295,7 @@ class FlaxPNDMScheduler(SchedulerMixin, ConfigMixin):
|
|||
times to approximate the solution.
|
||||
|
||||
Args:
|
||||
state (`PNDMSchedulerState`): the PNDMScheduler state data class instance.
|
||||
state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance.
|
||||
model_output (`jnp.ndarray`): direct output from learned diffusion model.
|
||||
timestep (`int`): current discrete timestep in the diffusion chain.
|
||||
sample (`jnp.ndarray`):
|
||||
|
@ -333,18 +323,18 @@ class FlaxPNDMScheduler(SchedulerMixin, ConfigMixin):
|
|||
prev_timestep = max(timestep - self.config.num_train_timesteps // state.num_inference_steps, 0)
|
||||
|
||||
if state.counter != 1:
|
||||
state.replace(ets=state.ets.append(model_output))
|
||||
state = state.replace(ets=state.ets.append(model_output))
|
||||
else:
|
||||
prev_timestep = timestep
|
||||
timestep = timestep + self.config.num_train_timesteps // state.num_inference_steps
|
||||
|
||||
if len(state.ets) == 1 and state.counter == 0:
|
||||
model_output = model_output
|
||||
state.replace(cur_sample=sample)
|
||||
state = state.replace(cur_sample=sample)
|
||||
elif len(state.ets) == 1 and state.counter == 1:
|
||||
model_output = (model_output + state.ets[-1]) / 2
|
||||
sample = state.cur_sample
|
||||
state.replace(cur_sample=None)
|
||||
state = state.replace(cur_sample=None)
|
||||
elif len(state.ets) == 2:
|
||||
model_output = (3 * state.ets[-1] - state.ets[-2]) / 2
|
||||
elif len(state.ets) == 3:
|
||||
|
@ -355,7 +345,7 @@ class FlaxPNDMScheduler(SchedulerMixin, ConfigMixin):
|
|||
)
|
||||
|
||||
prev_sample = self._get_prev_sample(sample, timestep, prev_timestep, model_output, state=state)
|
||||
state.replace(counter=state.counter + 1)
|
||||
state = state.replace(counter=state.counter + 1)
|
||||
|
||||
if not return_dict:
|
||||
return (prev_sample, state)
|
||||
|
@ -375,8 +365,8 @@ class FlaxPNDMScheduler(SchedulerMixin, ConfigMixin):
|
|||
# sample -> x_t
|
||||
# model_output -> e_θ(x_t, t)
|
||||
# prev_sample -> x_(t−δ)
|
||||
alpha_prod_t = state.alphas_cumprod[timestep + 1 - state._offset]
|
||||
alpha_prod_t_prev = state.alphas_cumprod[timestep_prev + 1 - state._offset]
|
||||
alpha_prod_t = self.alphas_cumprod[timestep + 1 - state._offset]
|
||||
alpha_prod_t_prev = self.alphas_cumprod[timestep_prev + 1 - state._offset]
|
||||
beta_prod_t = 1 - alpha_prod_t
|
||||
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
||||
|
||||
|
@ -400,14 +390,13 @@ class FlaxPNDMScheduler(SchedulerMixin, ConfigMixin):
|
|||
|
||||
def add_noise(
|
||||
self,
|
||||
state: PNDMSchedulerState,
|
||||
original_samples: jnp.ndarray,
|
||||
noise: jnp.ndarray,
|
||||
timesteps: jnp.ndarray,
|
||||
) -> jnp.ndarray:
|
||||
sqrt_alpha_prod = state.alphas_cumprod[timesteps] ** 0.5
|
||||
sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
|
||||
sqrt_alpha_prod = self.match_shape(sqrt_alpha_prod, original_samples)
|
||||
sqrt_one_minus_alpha_prod = (1 - state.alphas_cumprod[timesteps]) ** 0.5
|
||||
sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
|
||||
sqrt_one_minus_alpha_prod = self.match_shape(sqrt_one_minus_alpha_prod, original_samples)
|
||||
|
||||
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
|
||||
|
|
|
@ -55,6 +55,7 @@ class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
|
|||
[`~ConfigMixin.from_config`] functions.
|
||||
|
||||
Args:
|
||||
num_train_timesteps (`int`): number of diffusion steps used to train the model.
|
||||
snr (`float`):
|
||||
coefficient weighting the step from the model_output sample (from the network) to the random noise.
|
||||
sigma_min (`float`):
|
||||
|
|
|
@ -0,0 +1,260 @@
|
|||
# Copyright 2022 Google Brain and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import flax
|
||||
import jax.numpy as jnp
|
||||
from jax import random
|
||||
|
||||
from ..configuration_utils import ConfigMixin, register_to_config
|
||||
from .scheduling_utils import SchedulerMixin, SchedulerOutput
|
||||
|
||||
|
||||
@flax.struct.dataclass
|
||||
class ScoreSdeVeSchedulerState:
|
||||
# setable values
|
||||
timesteps: Optional[jnp.ndarray] = None
|
||||
discrete_sigmas: Optional[jnp.ndarray] = None
|
||||
sigmas: Optional[jnp.ndarray] = None
|
||||
|
||||
@classmethod
|
||||
def create(cls):
|
||||
return cls()
|
||||
|
||||
|
||||
@dataclass
|
||||
class FlaxSdeVeOutput(SchedulerOutput):
|
||||
"""
|
||||
Output class for the ScoreSdeVeScheduler's step function output.
|
||||
|
||||
Args:
|
||||
state (`ScoreSdeVeSchedulerState`):
|
||||
prev_sample (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)` for images):
|
||||
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
|
||||
denoising loop.
|
||||
prev_sample_mean (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)` for images):
|
||||
Mean averaged `prev_sample`. Same as `prev_sample`, only mean-averaged over previous timesteps.
|
||||
"""
|
||||
|
||||
state: ScoreSdeVeSchedulerState
|
||||
prev_sample: jnp.ndarray
|
||||
prev_sample_mean: Optional[jnp.ndarray] = None
|
||||
|
||||
|
||||
class FlaxScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
|
||||
"""
|
||||
The variance exploding stochastic differential equation (SDE) scheduler.
|
||||
|
||||
For more information, see the original paper: https://arxiv.org/abs/2011.13456
|
||||
|
||||
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
|
||||
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
|
||||
[`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
|
||||
[`~ConfigMixin.from_config`] functions.
|
||||
|
||||
Args:
|
||||
num_train_timesteps (`int`): number of diffusion steps used to train the model.
|
||||
snr (`float`):
|
||||
coefficient weighting the step from the model_output sample (from the network) to the random noise.
|
||||
sigma_min (`float`):
|
||||
initial noise scale for sigma sequence in sampling procedure. The minimum sigma should mirror the
|
||||
distribution of the data.
|
||||
sigma_max (`float`): maximum value used for the range of continuous timesteps passed into the model.
|
||||
sampling_eps (`float`): the end value of sampling, where timesteps decrease progressively from 1 to
|
||||
epsilon.
|
||||
correct_steps (`int`): number of correction steps performed on a produced sample.
|
||||
"""
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
num_train_timesteps: int = 2000,
|
||||
snr: float = 0.15,
|
||||
sigma_min: float = 0.01,
|
||||
sigma_max: float = 1348.0,
|
||||
sampling_eps: float = 1e-5,
|
||||
correct_steps: int = 1,
|
||||
):
|
||||
state = ScoreSdeVeSchedulerState.create()
|
||||
|
||||
self.state = self.set_sigmas(state, num_train_timesteps, sigma_min, sigma_max, sampling_eps)
|
||||
|
||||
def set_timesteps(
|
||||
self, state: ScoreSdeVeSchedulerState, num_inference_steps: int, sampling_eps: float = None
|
||||
) -> ScoreSdeVeSchedulerState:
|
||||
"""
|
||||
Sets the continuous timesteps used for the diffusion chain. Supporting function to be run before inference.
|
||||
|
||||
Args:
|
||||
state (`ScoreSdeVeSchedulerState`): the `FlaxScoreSdeVeScheduler` state data class instance.
|
||||
num_inference_steps (`int`):
|
||||
the number of diffusion steps used when generating samples with a pre-trained model.
|
||||
sampling_eps (`float`, optional): final timestep value (overrides value given at Scheduler instantiation).
|
||||
|
||||
"""
|
||||
sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
|
||||
|
||||
timesteps = jnp.linspace(1, sampling_eps, num_inference_steps)
|
||||
return state.replace(timesteps=timesteps)
|
||||
|
||||
def set_sigmas(
|
||||
self,
|
||||
state: ScoreSdeVeSchedulerState,
|
||||
num_inference_steps: int,
|
||||
sigma_min: float = None,
|
||||
sigma_max: float = None,
|
||||
sampling_eps: float = None,
|
||||
) -> ScoreSdeVeSchedulerState:
|
||||
"""
|
||||
Sets the noise scales used for the diffusion chain. Supporting function to be run before inference.
|
||||
|
||||
The sigmas control the weight of the `drift` and `diffusion` components of sample update.
|
||||
|
||||
Args:
|
||||
state (`ScoreSdeVeSchedulerState`): the `FlaxScoreSdeVeScheduler` state data class instance.
|
||||
num_inference_steps (`int`):
|
||||
the number of diffusion steps used when generating samples with a pre-trained model.
|
||||
sigma_min (`float`, optional):
|
||||
initial noise scale value (overrides value given at Scheduler instantiation).
|
||||
sigma_max (`float`, optional): final noise scale value (overrides value given at Scheduler instantiation).
|
||||
sampling_eps (`float`, optional): final timestep value (overrides value given at Scheduler instantiation).
|
||||
"""
|
||||
sigma_min = sigma_min if sigma_min is not None else self.config.sigma_min
|
||||
sigma_max = sigma_max if sigma_max is not None else self.config.sigma_max
|
||||
sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
|
||||
if state.timesteps is None:
|
||||
state = self.set_timesteps(state, num_inference_steps, sampling_eps)
|
||||
|
||||
discrete_sigmas = jnp.exp(jnp.linspace(jnp.log(sigma_min), jnp.log(sigma_max), num_inference_steps))
|
||||
sigmas = jnp.array([sigma_min * (sigma_max / sigma_min) ** t for t in state.timesteps])
|
||||
|
||||
return state.replace(discrete_sigmas=discrete_sigmas, sigmas=sigmas)
|
||||
|
||||
def get_adjacent_sigma(self, state, timesteps, t):
|
||||
return jnp.where(timesteps == 0, jnp.zeros_like(t), state.discrete_sigmas[timesteps - 1])
|
||||
|
||||
def step_pred(
|
||||
self,
|
||||
state: ScoreSdeVeSchedulerState,
|
||||
model_output: jnp.ndarray,
|
||||
timestep: int,
|
||||
sample: jnp.ndarray,
|
||||
key: random.KeyArray,
|
||||
return_dict: bool = True,
|
||||
) -> Union[FlaxSdeVeOutput, Tuple]:
|
||||
"""
|
||||
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
|
||||
process from the learned model outputs (most often the predicted noise).
|
||||
|
||||
Args:
|
||||
state (`ScoreSdeVeSchedulerState`): the `FlaxScoreSdeVeScheduler` state data class instance.
|
||||
model_output (`jnp.ndarray`): direct output from learned diffusion model.
|
||||
timestep (`int`): current discrete timestep in the diffusion chain.
|
||||
sample (`jnp.ndarray`):
|
||||
current instance of sample being created by diffusion process.
|
||||
generator: random number generator.
|
||||
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
|
||||
|
||||
Returns:
|
||||
[`FlaxSdeVeOutput`] or `tuple`: [`FlaxSdeVeOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
||||
returning a tuple, the first element is the sample tensor.
|
||||
|
||||
"""
|
||||
if state.timesteps is None:
|
||||
raise ValueError(
|
||||
"`state.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
|
||||
)
|
||||
|
||||
timestep = timestep * jnp.ones(
|
||||
sample.shape[0],
|
||||
)
|
||||
timesteps = (timestep * (len(state.timesteps) - 1)).long()
|
||||
|
||||
sigma = state.discrete_sigmas[timesteps]
|
||||
adjacent_sigma = self.get_adjacent_sigma(state, timesteps, timestep)
|
||||
drift = jnp.zeros_like(sample)
|
||||
diffusion = (sigma**2 - adjacent_sigma**2) ** 0.5
|
||||
|
||||
# equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
|
||||
# also equation 47 shows the analog from SDE models to ancestral sampling methods
|
||||
drift = drift - diffusion[:, None, None, None] ** 2 * model_output
|
||||
|
||||
# equation 6: sample noise for the diffusion term of
|
||||
key = random.split(key, num=1)
|
||||
noise = random.normal(key=key, shape=sample.shape)
|
||||
prev_sample_mean = sample - drift # subtract because `dt` is a small negative timestep
|
||||
# TODO is the variable diffusion the correct scaling term for the noise?
|
||||
prev_sample = prev_sample_mean + diffusion[:, None, None, None] * noise # add impact of diffusion field g
|
||||
|
||||
if not return_dict:
|
||||
return (prev_sample, prev_sample_mean, state)
|
||||
|
||||
return FlaxSdeVeOutput(prev_sample=prev_sample, prev_sample_mean=prev_sample_mean, state=state)
|
||||
|
||||
def step_correct(
|
||||
self,
|
||||
state: ScoreSdeVeSchedulerState,
|
||||
model_output: jnp.ndarray,
|
||||
sample: jnp.ndarray,
|
||||
key: random.KeyArray,
|
||||
return_dict: bool = True,
|
||||
) -> Union[SchedulerOutput, Tuple]:
|
||||
"""
|
||||
Correct the predicted sample based on the output model_output of the network. This is often run repeatedly
|
||||
after making the prediction for the previous timestep.
|
||||
|
||||
Args:
|
||||
state (`ScoreSdeVeSchedulerState`): the `FlaxScoreSdeVeScheduler` state data class instance.
|
||||
model_output (`jnp.ndarray`): direct output from learned diffusion model.
|
||||
sample (`jnp.ndarray`):
|
||||
current instance of sample being created by diffusion process.
|
||||
generator: random number generator.
|
||||
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
|
||||
|
||||
Returns:
|
||||
[`FlaxSdeVeOutput`] or `tuple`: [`FlaxSdeVeOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
||||
returning a tuple, the first element is the sample tensor.
|
||||
|
||||
"""
|
||||
if state.timesteps is None:
|
||||
raise ValueError(
|
||||
"`state.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
|
||||
)
|
||||
|
||||
# For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
|
||||
# sample noise for correction
|
||||
key = random.split(key, num=1)
|
||||
noise = random.normal(key=key, shape=sample.shape)
|
||||
|
||||
# compute step size from the model_output, the noise, and the snr
|
||||
grad_norm = jnp.linalg.norm(model_output)
|
||||
noise_norm = jnp.linalg.norm(noise)
|
||||
step_size = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
|
||||
step_size = step_size * jnp.ones(sample.shape[0])
|
||||
|
||||
# compute corrected sample: model_output term and noise term
|
||||
prev_sample_mean = sample + step_size[:, None, None, None] * model_output
|
||||
prev_sample = prev_sample_mean + ((step_size * 2) ** 0.5)[:, None, None, None] * noise
|
||||
|
||||
if not return_dict:
|
||||
return (prev_sample, state)
|
||||
|
||||
return FlaxSdeVeOutput(prev_sample=prev_sample, state=state)
|
||||
|
||||
def __len__(self):
|
||||
return self.config.num_train_timesteps
|
|
@ -11,8 +11,43 @@ class FlaxModelMixin(metaclass=DummyObject):
|
|||
requires_backends(self, ["flax"])
|
||||
|
||||
|
||||
class FlaxDDIMScheduler(metaclass=DummyObject):
|
||||
_backends = ["flax"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["flax"])
|
||||
|
||||
|
||||
class FlaxDDPMScheduler(metaclass=DummyObject):
|
||||
_backends = ["flax"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["flax"])
|
||||
|
||||
|
||||
class FlaxKarrasVeScheduler(metaclass=DummyObject):
|
||||
_backends = ["flax"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["flax"])
|
||||
|
||||
|
||||
class FlaxLMSDiscreteScheduler(metaclass=DummyObject):
|
||||
_backends = ["flax"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["flax"])
|
||||
|
||||
|
||||
class FlaxPNDMScheduler(metaclass=DummyObject):
|
||||
_backends = ["flax"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["flax"])
|
||||
|
||||
|
||||
class FlaxScoreSdeVeScheduler(metaclass=DummyObject):
|
||||
_backends = ["flax"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["flax"])
|
||||
|
|
|
@ -814,7 +814,7 @@ class ScoreSdeVeSchedulerTest(unittest.TestCase):
|
|||
for i, t in enumerate(scheduler.timesteps):
|
||||
sigma_t = scheduler.sigmas[i]
|
||||
|
||||
for _ in range(scheduler.correct_steps):
|
||||
for _ in range(scheduler.config.correct_steps):
|
||||
with torch.no_grad():
|
||||
model_output = model(sample, sigma_t)
|
||||
sample = scheduler.step_correct(model_output, sample, generator=generator, **kwargs).prev_sample
|
||||
|
|
|
@ -52,7 +52,7 @@ class TrainingTests(unittest.TestCase):
|
|||
tensor_format="pt",
|
||||
)
|
||||
|
||||
assert ddpm_scheduler.num_train_timesteps == ddim_scheduler.num_train_timesteps
|
||||
assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps
|
||||
|
||||
# shared batches for DDPM and DDIM
|
||||
set_seed(0)
|
||||
|
|
Loading…
Reference in New Issue