Add AudioLDM (#2232)
* Add AudioLDM * up * add vocoder * start unet * unconditional unet * clap, vocoder and vae * clean-up: conversion scripts * fix: conversion script token_type_ids * clean-up: pipeline docstring * tests: from SD * clean-up: cpu offload vocoder instead of safety checker * feat: adapt tests to audioldm * feat: add docs * clean-up: amend pipeline docstrings * clean-up: make style * clean-up: make fix-copies * fix: add doc path to toctree * clean-up: args for conversion script * clean-up: paths to checkpoints * fix: use conditional unet * clean-up: make style * fix: type hints for UNet * clean-up: docstring for UNet * clean-up: make style * clean-up: remove duplicate in docstring * clean-up: make style * clean-up: make fix-copies * clean-up: move imports to start in code snippet * fix: pass cross_attention_dim as a list/tuple to unet * clean-up: make fix-copies * fix: update checkpoint path * fix: unet cross_attention_dim in tests * film embeddings -> class embeddings * Apply suggestions from code review Co-authored-by: Will Berman <wlbberman@gmail.com> * fix: unet film embed to use existing args * fix: unet tests to use existing args * fix: make style * fix: transformers import and version in init * clean-up: make style * Revert "clean-up: make style" This reverts commit 5d6d1f8b324f5583e7805dc01e2c86e493660d66. * clean-up: make style * clean-up: use pipeline tester mixin tests where poss * clean-up: skip attn slicing test * fix: add torch dtype to docs * fix: remove conversion script out of src * fix: remove .detach from 1d waveform * fix: reduce default num inf steps * fix: swap height/width -> audio_length_in_s * clean-up: make style * fix: remove nightly tests * fix: imports in conversion script * clean-up: slim-down to two slow tests * clean-up: slim-down fast tests * fix: batch consistent tests * clean-up: make style * clean-up: remove vae slicing fast test * clean-up: propagate changes to doc * fix: increase test tol to 1e-2 * clean-up: finish docs * clean-up: make style * feat: vocoder / VAE compatibility check * feat: possibly expand / cut audio waveform * fix: pipeline call signature test * fix: slow tests output len * clean-up: make style * make style --------- Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by: William Berman <WLBberman@gmail.com>
This commit is contained in:
parent
1870fb05a9
commit
b94880e536
|
@ -134,6 +134,8 @@
|
|||
title: AltDiffusion
|
||||
- local: api/pipelines/audio_diffusion
|
||||
title: Audio Diffusion
|
||||
- local: api/pipelines/audioldm
|
||||
title: AudioLDM
|
||||
- local: api/pipelines/cycle_diffusion
|
||||
title: Cycle Diffusion
|
||||
- local: api/pipelines/dance_diffusion
|
||||
|
|
|
@ -0,0 +1,82 @@
|
|||
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# AudioLDM
|
||||
|
||||
## Overview
|
||||
|
||||
AudioLDM was proposed in [AudioLDM: Text-to-Audio Generation with Latent Diffusion Models](https://arxiv.org/abs/2301.12503) by Haohe Liu et al.
|
||||
|
||||
Inspired by [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/overview), AudioLDM
|
||||
is a text-to-audio _latent diffusion model (LDM)_ that learns continuous audio representations from [CLAP](https://huggingface.co/docs/transformers/main/model_doc/clap)
|
||||
latents. AudioLDM takes a text prompt as input and predicts the corresponding audio. It can generate text-conditional
|
||||
sound effects, human speech and music.
|
||||
|
||||
This pipeline was contributed by [sanchit-gandhi](https://huggingface.co/sanchit-gandhi). The original codebase can be found [here](https://github.com/haoheliu/AudioLDM).
|
||||
|
||||
## Text-to-Audio
|
||||
|
||||
The [`AudioLDMPipeline`] can be used to load pre-trained weights from [cvssp/audioldm](https://huggingface.co/cvssp/audioldm) and generate text-conditional audio outputs:
|
||||
|
||||
```python
|
||||
from diffusers import AudioLDMPipeline
|
||||
import torch
|
||||
import scipy
|
||||
|
||||
repo_id = "cvssp/audioldm"
|
||||
pipe = AudioLDMPipeline.from_pretrained(repo_id, torch_dtype=torch.float16)
|
||||
pipe = pipe.to("cuda")
|
||||
|
||||
prompt = "Techno music with a strong, upbeat tempo and high melodic riffs"
|
||||
audio = pipe(prompt, num_inference_steps=10, audio_length_in_s=5.0).audios[0]
|
||||
|
||||
# save the audio sample as a .wav file
|
||||
scipy.io.wavfile.write("techno.wav", rate=16000, data=audio)
|
||||
```
|
||||
|
||||
### Tips
|
||||
|
||||
Prompts:
|
||||
* Descriptive prompt inputs work best: you can use adjectives to describe the sound (e.g. "high quality" or "clear") and make the prompt context specific (e.g., "water stream in a forest" instead of "stream").
|
||||
* It's best to use general terms like 'cat' or 'dog' instead of specific names or abstract objects that the model may not be familiar with.
|
||||
|
||||
Inference:
|
||||
* The _quality_ of the predicted audio sample can be controlled by the `num_inference_steps` argument: higher steps give higher quality audio at the expense of slower inference.
|
||||
* The _length_ of the predicted audio sample can be controlled by varying the `audio_length_in_s` argument.
|
||||
|
||||
### How to load and use different schedulers
|
||||
|
||||
The AudioLDM pipeline uses [`DDIMScheduler`] scheduler by default. But `diffusers` provides many other schedulers
|
||||
that can be used with the AudioLDM pipeline such as [`PNDMScheduler`], [`LMSDiscreteScheduler`], [`EulerDiscreteScheduler`],
|
||||
[`EulerAncestralDiscreteScheduler`] etc. We recommend using the [`DPMSolverMultistepScheduler`] as it's currently the fastest
|
||||
scheduler there is.
|
||||
|
||||
To use a different scheduler, you can either change it via the [`ConfigMixin.from_config`]
|
||||
method, or pass the `scheduler` argument to the `from_pretrained` method of the pipeline. For example, to use the
|
||||
[`DPMSolverMultistepScheduler`], you can do the following:
|
||||
|
||||
```python
|
||||
>>> from diffusers import AudioLDMPipeline, DPMSolverMultistepScheduler
|
||||
>>> import torch
|
||||
|
||||
>>> pipeline = AudioLDMPipeline.from_pretrained("cvssp/audioldm", torch_dtype=torch.float16)
|
||||
>>> pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
|
||||
|
||||
>>> # or
|
||||
>>> dpm_scheduler = DPMSolverMultistepScheduler.from_pretrained("cvssp/audioldm", subfolder="scheduler")
|
||||
>>> pipeline = AudioLDMPipeline.from_pretrained("cvssp/audioldm", scheduler=dpm_scheduler, torch_dtype=torch.float16)
|
||||
```
|
||||
|
||||
## AudioLDMPipeline
|
||||
[[autodoc]] AudioLDMPipeline
|
||||
- all
|
||||
- __call__
|
File diff suppressed because it is too large
Load Diff
|
@ -112,6 +112,7 @@ else:
|
|||
from .pipelines import (
|
||||
AltDiffusionImg2ImgPipeline,
|
||||
AltDiffusionPipeline,
|
||||
AudioLDMPipeline,
|
||||
CycleDiffusionPipeline,
|
||||
LDMTextToImagePipeline,
|
||||
PaintByExamplePipeline,
|
||||
|
|
|
@ -86,13 +86,14 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin)
|
|||
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
||||
If `None`, it will skip the normalization and activation layers in post-processing
|
||||
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
||||
cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features.
|
||||
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
||||
The dimension of the cross attention features.
|
||||
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
||||
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
||||
for resnet blocks, see [`~models.resnet.ResnetBlock2D`]. Choose from `default` or `scale_shift`.
|
||||
class_embed_type (`str`, *optional*, defaults to None):
|
||||
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
||||
`"timestep"`, `"identity"`, or `"projection"`.
|
||||
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
||||
num_class_embeds (`int`, *optional*, defaults to None):
|
||||
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
||||
class conditioning with `class_embed_type` equal to `None`.
|
||||
|
@ -106,6 +107,8 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin)
|
|||
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
||||
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
|
||||
using the "projection" `class_embed_type`. Required when using the "projection" `class_embed_type`.
|
||||
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
||||
embeddings with the class embeddings.
|
||||
"""
|
||||
|
||||
_supports_gradient_checkpointing = True
|
||||
|
@ -135,7 +138,7 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin)
|
|||
act_fn: str = "silu",
|
||||
norm_num_groups: Optional[int] = 32,
|
||||
norm_eps: float = 1e-5,
|
||||
cross_attention_dim: int = 1280,
|
||||
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
||||
attention_head_dim: Union[int, Tuple[int]] = 8,
|
||||
dual_cross_attention: bool = False,
|
||||
use_linear_projection: bool = False,
|
||||
|
@ -149,6 +152,7 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin)
|
|||
conv_in_kernel: int = 3,
|
||||
conv_out_kernel: int = 3,
|
||||
projection_class_embeddings_input_dim: Optional[int] = None,
|
||||
class_embeddings_concat: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
|
@ -175,6 +179,11 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin)
|
|||
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
||||
)
|
||||
|
||||
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
||||
raise ValueError(
|
||||
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
||||
)
|
||||
|
||||
# input
|
||||
conv_in_padding = (conv_in_kernel - 1) // 2
|
||||
self.conv_in = nn.Conv2d(
|
||||
|
@ -228,6 +237,12 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin)
|
|||
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
||||
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
||||
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
||||
elif class_embed_type == "simple_projection":
|
||||
if projection_class_embeddings_input_dim is None:
|
||||
raise ValueError(
|
||||
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
||||
)
|
||||
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
||||
else:
|
||||
self.class_embedding = None
|
||||
|
||||
|
@ -240,6 +255,17 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin)
|
|||
if isinstance(attention_head_dim, int):
|
||||
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
||||
|
||||
if isinstance(cross_attention_dim, int):
|
||||
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
||||
|
||||
if class_embeddings_concat:
|
||||
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
||||
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
||||
# regular time embeddings
|
||||
blocks_time_embed_dim = time_embed_dim * 2
|
||||
else:
|
||||
blocks_time_embed_dim = time_embed_dim
|
||||
|
||||
# down
|
||||
output_channel = block_out_channels[0]
|
||||
for i, down_block_type in enumerate(down_block_types):
|
||||
|
@ -252,12 +278,12 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin)
|
|||
num_layers=layers_per_block,
|
||||
in_channels=input_channel,
|
||||
out_channels=output_channel,
|
||||
temb_channels=time_embed_dim,
|
||||
temb_channels=blocks_time_embed_dim,
|
||||
add_downsample=not is_final_block,
|
||||
resnet_eps=norm_eps,
|
||||
resnet_act_fn=act_fn,
|
||||
resnet_groups=norm_num_groups,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
cross_attention_dim=cross_attention_dim[i],
|
||||
attn_num_head_channels=attention_head_dim[i],
|
||||
downsample_padding=downsample_padding,
|
||||
dual_cross_attention=dual_cross_attention,
|
||||
|
@ -272,12 +298,12 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin)
|
|||
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
||||
self.mid_block = UNetMidBlock2DCrossAttn(
|
||||
in_channels=block_out_channels[-1],
|
||||
temb_channels=time_embed_dim,
|
||||
temb_channels=blocks_time_embed_dim,
|
||||
resnet_eps=norm_eps,
|
||||
resnet_act_fn=act_fn,
|
||||
output_scale_factor=mid_block_scale_factor,
|
||||
resnet_time_scale_shift=resnet_time_scale_shift,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
cross_attention_dim=cross_attention_dim[-1],
|
||||
attn_num_head_channels=attention_head_dim[-1],
|
||||
resnet_groups=norm_num_groups,
|
||||
dual_cross_attention=dual_cross_attention,
|
||||
|
@ -287,11 +313,11 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin)
|
|||
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
||||
self.mid_block = UNetMidBlock2DSimpleCrossAttn(
|
||||
in_channels=block_out_channels[-1],
|
||||
temb_channels=time_embed_dim,
|
||||
temb_channels=blocks_time_embed_dim,
|
||||
resnet_eps=norm_eps,
|
||||
resnet_act_fn=act_fn,
|
||||
output_scale_factor=mid_block_scale_factor,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
cross_attention_dim=cross_attention_dim[-1],
|
||||
attn_num_head_channels=attention_head_dim[-1],
|
||||
resnet_groups=norm_num_groups,
|
||||
resnet_time_scale_shift=resnet_time_scale_shift,
|
||||
|
@ -307,6 +333,7 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin)
|
|||
# up
|
||||
reversed_block_out_channels = list(reversed(block_out_channels))
|
||||
reversed_attention_head_dim = list(reversed(attention_head_dim))
|
||||
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
||||
only_cross_attention = list(reversed(only_cross_attention))
|
||||
|
||||
output_channel = reversed_block_out_channels[0]
|
||||
|
@ -330,12 +357,12 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin)
|
|||
in_channels=input_channel,
|
||||
out_channels=output_channel,
|
||||
prev_output_channel=prev_output_channel,
|
||||
temb_channels=time_embed_dim,
|
||||
temb_channels=blocks_time_embed_dim,
|
||||
add_upsample=add_upsample,
|
||||
resnet_eps=norm_eps,
|
||||
resnet_act_fn=act_fn,
|
||||
resnet_groups=norm_num_groups,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
cross_attention_dim=reversed_cross_attention_dim[i],
|
||||
attn_num_head_channels=reversed_attention_head_dim[i],
|
||||
dual_cross_attention=dual_cross_attention,
|
||||
use_linear_projection=use_linear_projection,
|
||||
|
@ -571,7 +598,11 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin)
|
|||
class_labels = self.time_proj(class_labels)
|
||||
|
||||
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
||||
emb = emb + class_emb
|
||||
|
||||
if self.config.class_embeddings_concat:
|
||||
emb = torch.cat([emb, class_emb], dim=-1)
|
||||
else:
|
||||
emb = emb + class_emb
|
||||
|
||||
# 2. pre-process
|
||||
sample = self.conv_in(sample)
|
||||
|
|
|
@ -44,6 +44,7 @@ except OptionalDependencyNotAvailable:
|
|||
from ..utils.dummy_torch_and_transformers_objects import * # noqa F403
|
||||
else:
|
||||
from .alt_diffusion import AltDiffusionImg2ImgPipeline, AltDiffusionPipeline
|
||||
from .audioldm import AudioLDMPipeline
|
||||
from .latent_diffusion import LDMTextToImagePipeline
|
||||
from .paint_by_example import PaintByExamplePipeline
|
||||
from .semantic_stable_diffusion import SemanticStableDiffusionPipeline
|
||||
|
|
|
@ -0,0 +1,17 @@
|
|||
from ...utils import (
|
||||
OptionalDependencyNotAvailable,
|
||||
is_torch_available,
|
||||
is_transformers_available,
|
||||
is_transformers_version,
|
||||
)
|
||||
|
||||
|
||||
try:
|
||||
if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.27.0")):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
from ...utils.dummy_torch_and_transformers_objects import (
|
||||
AudioLDMPipeline,
|
||||
)
|
||||
else:
|
||||
from .pipeline_audioldm import AudioLDMPipeline
|
|
@ -0,0 +1,601 @@
|
|||
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import inspect
|
||||
from typing import Any, Callable, Dict, List, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from transformers import ClapTextModelWithProjection, RobertaTokenizer, RobertaTokenizerFast, SpeechT5HifiGan
|
||||
|
||||
from ...models import AutoencoderKL, UNet2DConditionModel
|
||||
from ...schedulers import KarrasDiffusionSchedulers
|
||||
from ...utils import is_accelerate_available, logging, randn_tensor, replace_example_docstring
|
||||
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
EXAMPLE_DOC_STRING = """
|
||||
Examples:
|
||||
```py
|
||||
>>> import torch
|
||||
>>> from diffusers import AudioLDMPipeline
|
||||
|
||||
>>> pipe = AudioLDMPipeline.from_pretrained("cvssp/audioldm", torch_dtype=torch.float16)
|
||||
>>> pipe = pipe.to("cuda")
|
||||
|
||||
>>> prompt = "A hammer hitting a wooden surface"
|
||||
>>> audio = pipe(prompt).audio[0]
|
||||
```
|
||||
"""
|
||||
|
||||
|
||||
class AudioLDMPipeline(DiffusionPipeline):
|
||||
r"""
|
||||
Pipeline for text-to-audio generation using AudioLDM.
|
||||
|
||||
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
||||
|
||||
Args:
|
||||
vae ([`AutoencoderKL`]):
|
||||
Variational Auto-Encoder (VAE) Model to encode and decode audios to and from latent representations.
|
||||
text_encoder ([`ClapTextModelWithProjection`]):
|
||||
Frozen text-encoder. AudioLDM uses the text portion of
|
||||
[CLAP](https://huggingface.co/docs/transformers/main/model_doc/clap#transformers.ClapTextModelWithProjection),
|
||||
specifically the [RoBERTa HSTAT-unfused](https://huggingface.co/laion/clap-htsat-unfused) variant.
|
||||
tokenizer ([`PreTrainedTokenizer`]):
|
||||
Tokenizer of class
|
||||
[RobertaTokenizer](https://huggingface.co/docs/transformers/model_doc/roberta#transformers.RobertaTokenizer).
|
||||
unet ([`UNet2DConditionModel`]): U-Net architecture to denoise the encoded audio latents.
|
||||
scheduler ([`SchedulerMixin`]):
|
||||
A scheduler to be used in combination with `unet` to denoise the encoded audio latents. Can be one of
|
||||
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
||||
vocoder ([`SpeechT5HifiGan`]):
|
||||
Vocoder of class
|
||||
[SpeechT5HifiGan](https://huggingface.co/docs/transformers/main/en/model_doc/speecht5#transformers.SpeechT5HifiGan).
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vae: AutoencoderKL,
|
||||
text_encoder: ClapTextModelWithProjection,
|
||||
tokenizer: Union[RobertaTokenizer, RobertaTokenizerFast],
|
||||
unet: UNet2DConditionModel,
|
||||
scheduler: KarrasDiffusionSchedulers,
|
||||
vocoder: SpeechT5HifiGan,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.register_modules(
|
||||
vae=vae,
|
||||
text_encoder=text_encoder,
|
||||
tokenizer=tokenizer,
|
||||
unet=unet,
|
||||
scheduler=scheduler,
|
||||
vocoder=vocoder,
|
||||
)
|
||||
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
||||
def enable_vae_slicing(self):
|
||||
r"""
|
||||
Enable sliced VAE decoding.
|
||||
|
||||
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
|
||||
steps. This is useful to save some memory and allow larger batch sizes.
|
||||
"""
|
||||
self.vae.enable_slicing()
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
||||
def disable_vae_slicing(self):
|
||||
r"""
|
||||
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
|
||||
computing decoding in one step.
|
||||
"""
|
||||
self.vae.disable_slicing()
|
||||
|
||||
def enable_sequential_cpu_offload(self, gpu_id=0):
|
||||
r"""
|
||||
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
||||
text_encoder, vae and vocoder have their state dicts saved to CPU and then are moved to a `torch.device('meta')
|
||||
and loaded to GPU only when their specific submodule has its `forward` method called.
|
||||
"""
|
||||
if is_accelerate_available():
|
||||
from accelerate import cpu_offload
|
||||
else:
|
||||
raise ImportError("Please install accelerate via `pip install accelerate`")
|
||||
|
||||
device = torch.device(f"cuda:{gpu_id}")
|
||||
|
||||
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.vocoder]:
|
||||
cpu_offload(cpu_offloaded_model, device)
|
||||
|
||||
@property
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
|
||||
def _execution_device(self):
|
||||
r"""
|
||||
Returns the device on which the pipeline's models will be executed. After calling
|
||||
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
||||
hooks.
|
||||
"""
|
||||
if not hasattr(self.unet, "_hf_hook"):
|
||||
return self.device
|
||||
for module in self.unet.modules():
|
||||
if (
|
||||
hasattr(module, "_hf_hook")
|
||||
and hasattr(module._hf_hook, "execution_device")
|
||||
and module._hf_hook.execution_device is not None
|
||||
):
|
||||
return torch.device(module._hf_hook.execution_device)
|
||||
return self.device
|
||||
|
||||
def _encode_prompt(
|
||||
self,
|
||||
prompt,
|
||||
device,
|
||||
num_waveforms_per_prompt,
|
||||
do_classifier_free_guidance,
|
||||
negative_prompt=None,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
):
|
||||
r"""
|
||||
Encodes the prompt into text encoder hidden states.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
prompt to be encoded
|
||||
device (`torch.device`):
|
||||
torch device
|
||||
num_waveforms_per_prompt (`int`):
|
||||
number of waveforms that should be generated per prompt
|
||||
do_classifier_free_guidance (`bool`):
|
||||
whether to use classifier free guidance or not
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the audio generation. If not defined, one has to pass
|
||||
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
||||
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
||||
prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
"""
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
if prompt_embeds is None:
|
||||
text_inputs = self.tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=self.tokenizer.model_max_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
text_input_ids = text_inputs.input_ids
|
||||
attention_mask = text_inputs.attention_mask
|
||||
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
||||
|
||||
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
||||
text_input_ids, untruncated_ids
|
||||
):
|
||||
removed_text = self.tokenizer.batch_decode(
|
||||
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
||||
)
|
||||
logger.warning(
|
||||
"The following part of your input was truncated because CLAP can only handle sequences up to"
|
||||
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
||||
)
|
||||
|
||||
prompt_embeds = self.text_encoder(
|
||||
text_input_ids.to(device),
|
||||
attention_mask=attention_mask.to(device),
|
||||
)
|
||||
prompt_embeds = prompt_embeds.text_embeds
|
||||
# additional L_2 normalization over each hidden-state
|
||||
prompt_embeds = F.normalize(prompt_embeds, dim=-1)
|
||||
|
||||
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
||||
|
||||
(
|
||||
bs_embed,
|
||||
seq_len,
|
||||
) = prompt_embeds.shape
|
||||
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
||||
prompt_embeds = prompt_embeds.repeat(1, num_waveforms_per_prompt)
|
||||
prompt_embeds = prompt_embeds.view(bs_embed * num_waveforms_per_prompt, seq_len)
|
||||
|
||||
# get unconditional embeddings for classifier free guidance
|
||||
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
||||
uncond_tokens: List[str]
|
||||
if negative_prompt is None:
|
||||
uncond_tokens = [""] * batch_size
|
||||
elif type(prompt) is not type(negative_prompt):
|
||||
raise TypeError(
|
||||
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
||||
f" {type(prompt)}."
|
||||
)
|
||||
elif isinstance(negative_prompt, str):
|
||||
uncond_tokens = [negative_prompt]
|
||||
elif batch_size != len(negative_prompt):
|
||||
raise ValueError(
|
||||
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
||||
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
||||
" the batch size of `prompt`."
|
||||
)
|
||||
else:
|
||||
uncond_tokens = negative_prompt
|
||||
|
||||
max_length = prompt_embeds.shape[1]
|
||||
uncond_input = self.tokenizer(
|
||||
uncond_tokens,
|
||||
padding="max_length",
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
uncond_input_ids = uncond_input.input_ids.to(device)
|
||||
attention_mask = uncond_input.attention_mask.to(device)
|
||||
|
||||
negative_prompt_embeds = self.text_encoder(
|
||||
uncond_input_ids,
|
||||
attention_mask=attention_mask,
|
||||
)
|
||||
negative_prompt_embeds = negative_prompt_embeds.text_embeds
|
||||
# additional L_2 normalization over each hidden-state
|
||||
negative_prompt_embeds = F.normalize(negative_prompt_embeds, dim=-1)
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
||||
seq_len = negative_prompt_embeds.shape[1]
|
||||
|
||||
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
||||
|
||||
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_waveforms_per_prompt)
|
||||
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_waveforms_per_prompt, seq_len)
|
||||
|
||||
# For classifier free guidance, we need to do two forward passes.
|
||||
# Here we concatenate the unconditional and text embeddings into a single batch
|
||||
# to avoid doing two forward passes
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
||||
|
||||
return prompt_embeds
|
||||
|
||||
def decode_latents(self, latents):
|
||||
latents = 1 / self.vae.config.scaling_factor * latents
|
||||
mel_spectrogram = self.vae.decode(latents).sample
|
||||
return mel_spectrogram
|
||||
|
||||
def mel_spectrogram_to_waveform(self, mel_spectrogram):
|
||||
if mel_spectrogram.dim() == 4:
|
||||
mel_spectrogram = mel_spectrogram.squeeze(1)
|
||||
|
||||
waveform = self.vocoder(mel_spectrogram)
|
||||
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
||||
waveform = waveform.cpu()
|
||||
return waveform
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
||||
def prepare_extra_step_kwargs(self, generator, eta):
|
||||
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
||||
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
||||
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
||||
# and should be between [0, 1]
|
||||
|
||||
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||||
extra_step_kwargs = {}
|
||||
if accepts_eta:
|
||||
extra_step_kwargs["eta"] = eta
|
||||
|
||||
# check if the scheduler accepts generator
|
||||
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||||
if accepts_generator:
|
||||
extra_step_kwargs["generator"] = generator
|
||||
return extra_step_kwargs
|
||||
|
||||
def check_inputs(
|
||||
self,
|
||||
prompt,
|
||||
audio_length_in_s,
|
||||
vocoder_upsample_factor,
|
||||
callback_steps,
|
||||
negative_prompt=None,
|
||||
prompt_embeds=None,
|
||||
negative_prompt_embeds=None,
|
||||
):
|
||||
min_audio_length_in_s = vocoder_upsample_factor * self.vae_scale_factor
|
||||
if audio_length_in_s < min_audio_length_in_s:
|
||||
raise ValueError(
|
||||
f"`audio_length_in_s` has to be a positive value greater than or equal to {min_audio_length_in_s}, but "
|
||||
f"is {audio_length_in_s}."
|
||||
)
|
||||
|
||||
if self.vocoder.config.model_in_dim % self.vae_scale_factor != 0:
|
||||
raise ValueError(
|
||||
f"The number of frequency bins in the vocoder's log-mel spectrogram has to be divisible by the "
|
||||
f"VAE scale factor, but got {self.vocoder.config.model_in_dim} bins and a scale factor of "
|
||||
f"{self.vae_scale_factor}."
|
||||
)
|
||||
|
||||
if (callback_steps is None) or (
|
||||
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
||||
f" {type(callback_steps)}."
|
||||
)
|
||||
|
||||
if prompt is not None and prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
||||
" only forward one of the two."
|
||||
)
|
||||
elif prompt is None and prompt_embeds is None:
|
||||
raise ValueError(
|
||||
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
||||
)
|
||||
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
|
||||
if negative_prompt is not None and negative_prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
||||
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
||||
)
|
||||
|
||||
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
||||
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
||||
raise ValueError(
|
||||
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
||||
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
||||
f" {negative_prompt_embeds.shape}."
|
||||
)
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents with width->self.vocoder.config.model_in_dim
|
||||
def prepare_latents(self, batch_size, num_channels_latents, height, dtype, device, generator, latents=None):
|
||||
shape = (
|
||||
batch_size,
|
||||
num_channels_latents,
|
||||
height // self.vae_scale_factor,
|
||||
self.vocoder.config.model_in_dim // self.vae_scale_factor,
|
||||
)
|
||||
if isinstance(generator, list) and len(generator) != batch_size:
|
||||
raise ValueError(
|
||||
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
||||
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
||||
)
|
||||
|
||||
if latents is None:
|
||||
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||||
else:
|
||||
latents = latents.to(device)
|
||||
|
||||
# scale the initial noise by the standard deviation required by the scheduler
|
||||
latents = latents * self.scheduler.init_noise_sigma
|
||||
return latents
|
||||
|
||||
@torch.no_grad()
|
||||
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
||||
def __call__(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
audio_length_in_s: Optional[float] = None,
|
||||
num_inference_steps: int = 10,
|
||||
guidance_scale: float = 2.5,
|
||||
negative_prompt: Optional[Union[str, List[str]]] = None,
|
||||
num_waveforms_per_prompt: Optional[int] = 1,
|
||||
eta: float = 0.0,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[torch.FloatTensor] = None,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
return_dict: bool = True,
|
||||
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
||||
callback_steps: Optional[int] = 1,
|
||||
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
output_type: Optional[str] = "np",
|
||||
):
|
||||
r"""
|
||||
Function invoked when calling the pipeline for generation.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts to guide the audio generation. If not defined, one has to pass `prompt_embeds`.
|
||||
instead.
|
||||
audio_length_in_s (`int`, *optional*, defaults to 5.12):
|
||||
The length of the generated audio sample in seconds.
|
||||
num_inference_steps (`int`, *optional*, defaults to 10):
|
||||
The number of denoising steps. More denoising steps usually lead to a higher quality audio at the
|
||||
expense of slower inference.
|
||||
guidance_scale (`float`, *optional*, defaults to 2.5):
|
||||
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
||||
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
||||
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
||||
1`. Higher guidance scale encourages to generate audios that are closely linked to the text `prompt`,
|
||||
usually at the expense of lower sound quality.
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the audio generation. If not defined, one has to pass
|
||||
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
||||
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
||||
num_waveforms_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of waveforms to generate per prompt.
|
||||
eta (`float`, *optional*, defaults to 0.0):
|
||||
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
||||
[`schedulers.DDIMScheduler`], will be ignored for others.
|
||||
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
||||
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
||||
to make generation deterministic.
|
||||
latents (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for audio
|
||||
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||||
tensor will ge generated by sampling using the supplied random `generator`.
|
||||
prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
||||
plain tuple.
|
||||
callback (`Callable`, *optional*):
|
||||
A function that will be called every `callback_steps` steps during inference. The function will be
|
||||
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
||||
callback_steps (`int`, *optional*, defaults to 1):
|
||||
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
||||
called at every step.
|
||||
cross_attention_kwargs (`dict`, *optional*):
|
||||
A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under
|
||||
`self.processor` in
|
||||
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
||||
output_type (`str`, *optional*, defaults to `"np"`):
|
||||
The output format of the generate image. Choose between:
|
||||
- `"np"`: Return Numpy `np.ndarray` objects.
|
||||
- `"pt"`: Return PyTorch `torch.Tensor` objects.
|
||||
|
||||
Examples:
|
||||
|
||||
Returns:
|
||||
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
||||
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
||||
When returning a tuple, the first element is a list with the generated audios.
|
||||
"""
|
||||
# 0. Convert audio input length from seconds to spectrogram height
|
||||
vocoder_upsample_factor = np.prod(self.vocoder.config.upsample_rates) / self.vocoder.config.sampling_rate
|
||||
|
||||
if audio_length_in_s is None:
|
||||
audio_length_in_s = self.unet.config.sample_size * self.vae_scale_factor * vocoder_upsample_factor
|
||||
|
||||
height = int(audio_length_in_s / vocoder_upsample_factor)
|
||||
|
||||
original_waveform_length = int(audio_length_in_s * self.vocoder.config.sampling_rate)
|
||||
if height % self.vae_scale_factor != 0:
|
||||
height = int(np.ceil(height / self.vae_scale_factor)) * self.vae_scale_factor
|
||||
logger.info(
|
||||
f"Audio length in seconds {audio_length_in_s} is increased to {height * vocoder_upsample_factor} "
|
||||
f"so that it can be handled by the model. It will be cut to {audio_length_in_s} after the "
|
||||
f"denoising process."
|
||||
)
|
||||
|
||||
# 1. Check inputs. Raise error if not correct
|
||||
self.check_inputs(
|
||||
prompt,
|
||||
audio_length_in_s,
|
||||
vocoder_upsample_factor,
|
||||
callback_steps,
|
||||
negative_prompt,
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
)
|
||||
|
||||
# 2. Define call parameters
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
device = self._execution_device
|
||||
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||||
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
||||
# corresponds to doing no classifier free guidance.
|
||||
do_classifier_free_guidance = guidance_scale > 1.0
|
||||
|
||||
# 3. Encode input prompt
|
||||
prompt_embeds = self._encode_prompt(
|
||||
prompt,
|
||||
device,
|
||||
num_waveforms_per_prompt,
|
||||
do_classifier_free_guidance,
|
||||
negative_prompt,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
)
|
||||
|
||||
# 4. Prepare timesteps
|
||||
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
||||
timesteps = self.scheduler.timesteps
|
||||
|
||||
# 5. Prepare latent variables
|
||||
num_channels_latents = self.unet.in_channels
|
||||
latents = self.prepare_latents(
|
||||
batch_size * num_waveforms_per_prompt,
|
||||
num_channels_latents,
|
||||
height,
|
||||
prompt_embeds.dtype,
|
||||
device,
|
||||
generator,
|
||||
latents,
|
||||
)
|
||||
|
||||
# 6. Prepare extra step kwargs
|
||||
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
||||
|
||||
# 7. Denoising loop
|
||||
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
# expand the latents if we are doing classifier free guidance
|
||||
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
||||
|
||||
# predict the noise residual
|
||||
noise_pred = self.unet(
|
||||
latent_model_input,
|
||||
t,
|
||||
encoder_hidden_states=None,
|
||||
class_labels=prompt_embeds,
|
||||
cross_attention_kwargs=cross_attention_kwargs,
|
||||
).sample
|
||||
|
||||
# perform guidance
|
||||
if do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
||||
|
||||
# call the callback, if provided
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
if callback is not None and i % callback_steps == 0:
|
||||
callback(i, t, latents)
|
||||
|
||||
# 8. Post-processing
|
||||
mel_spectrogram = self.decode_latents(latents)
|
||||
|
||||
audio = self.mel_spectrogram_to_waveform(mel_spectrogram)
|
||||
|
||||
audio = audio[:, :original_waveform_length]
|
||||
|
||||
if output_type == "np":
|
||||
audio = audio.numpy()
|
||||
|
||||
if not return_dict:
|
||||
return (audio,)
|
||||
|
||||
return AudioPipelineOutput(audios=audio)
|
|
@ -167,13 +167,14 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
|
|||
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
||||
If `None`, it will skip the normalization and activation layers in post-processing
|
||||
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
||||
cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features.
|
||||
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
||||
The dimension of the cross attention features.
|
||||
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
||||
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
||||
for resnet blocks, see [`~models.resnet.ResnetBlockFlat`]. Choose from `default` or `scale_shift`.
|
||||
class_embed_type (`str`, *optional*, defaults to None):
|
||||
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
||||
`"timestep"`, `"identity"`, or `"projection"`.
|
||||
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
||||
num_class_embeds (`int`, *optional*, defaults to None):
|
||||
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
||||
class conditioning with `class_embed_type` equal to `None`.
|
||||
|
@ -187,6 +188,8 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
|
|||
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
||||
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
|
||||
using the "projection" `class_embed_type`. Required when using the "projection" `class_embed_type`.
|
||||
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
||||
embeddings with the class embeddings.
|
||||
"""
|
||||
|
||||
_supports_gradient_checkpointing = True
|
||||
|
@ -221,7 +224,7 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
|
|||
act_fn: str = "silu",
|
||||
norm_num_groups: Optional[int] = 32,
|
||||
norm_eps: float = 1e-5,
|
||||
cross_attention_dim: int = 1280,
|
||||
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
||||
attention_head_dim: Union[int, Tuple[int]] = 8,
|
||||
dual_cross_attention: bool = False,
|
||||
use_linear_projection: bool = False,
|
||||
|
@ -235,6 +238,7 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
|
|||
conv_in_kernel: int = 3,
|
||||
conv_out_kernel: int = 3,
|
||||
projection_class_embeddings_input_dim: Optional[int] = None,
|
||||
class_embeddings_concat: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
|
@ -265,6 +269,12 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
|
|||
f" {attention_head_dim}. `down_block_types`: {down_block_types}."
|
||||
)
|
||||
|
||||
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
||||
raise ValueError(
|
||||
"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`:"
|
||||
f" {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
||||
)
|
||||
|
||||
# input
|
||||
conv_in_padding = (conv_in_kernel - 1) // 2
|
||||
self.conv_in = LinearMultiDim(
|
||||
|
@ -318,6 +328,12 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
|
|||
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
||||
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
||||
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
||||
elif class_embed_type == "simple_projection":
|
||||
if projection_class_embeddings_input_dim is None:
|
||||
raise ValueError(
|
||||
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
||||
)
|
||||
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
||||
else:
|
||||
self.class_embedding = None
|
||||
|
||||
|
@ -330,6 +346,17 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
|
|||
if isinstance(attention_head_dim, int):
|
||||
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
||||
|
||||
if isinstance(cross_attention_dim, int):
|
||||
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
||||
|
||||
if class_embeddings_concat:
|
||||
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
||||
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
||||
# regular time embeddings
|
||||
blocks_time_embed_dim = time_embed_dim * 2
|
||||
else:
|
||||
blocks_time_embed_dim = time_embed_dim
|
||||
|
||||
# down
|
||||
output_channel = block_out_channels[0]
|
||||
for i, down_block_type in enumerate(down_block_types):
|
||||
|
@ -342,12 +369,12 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
|
|||
num_layers=layers_per_block,
|
||||
in_channels=input_channel,
|
||||
out_channels=output_channel,
|
||||
temb_channels=time_embed_dim,
|
||||
temb_channels=blocks_time_embed_dim,
|
||||
add_downsample=not is_final_block,
|
||||
resnet_eps=norm_eps,
|
||||
resnet_act_fn=act_fn,
|
||||
resnet_groups=norm_num_groups,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
cross_attention_dim=cross_attention_dim[i],
|
||||
attn_num_head_channels=attention_head_dim[i],
|
||||
downsample_padding=downsample_padding,
|
||||
dual_cross_attention=dual_cross_attention,
|
||||
|
@ -362,12 +389,12 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
|
|||
if mid_block_type == "UNetMidBlockFlatCrossAttn":
|
||||
self.mid_block = UNetMidBlockFlatCrossAttn(
|
||||
in_channels=block_out_channels[-1],
|
||||
temb_channels=time_embed_dim,
|
||||
temb_channels=blocks_time_embed_dim,
|
||||
resnet_eps=norm_eps,
|
||||
resnet_act_fn=act_fn,
|
||||
output_scale_factor=mid_block_scale_factor,
|
||||
resnet_time_scale_shift=resnet_time_scale_shift,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
cross_attention_dim=cross_attention_dim[-1],
|
||||
attn_num_head_channels=attention_head_dim[-1],
|
||||
resnet_groups=norm_num_groups,
|
||||
dual_cross_attention=dual_cross_attention,
|
||||
|
@ -377,11 +404,11 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
|
|||
elif mid_block_type == "UNetMidBlockFlatSimpleCrossAttn":
|
||||
self.mid_block = UNetMidBlockFlatSimpleCrossAttn(
|
||||
in_channels=block_out_channels[-1],
|
||||
temb_channels=time_embed_dim,
|
||||
temb_channels=blocks_time_embed_dim,
|
||||
resnet_eps=norm_eps,
|
||||
resnet_act_fn=act_fn,
|
||||
output_scale_factor=mid_block_scale_factor,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
cross_attention_dim=cross_attention_dim[-1],
|
||||
attn_num_head_channels=attention_head_dim[-1],
|
||||
resnet_groups=norm_num_groups,
|
||||
resnet_time_scale_shift=resnet_time_scale_shift,
|
||||
|
@ -397,6 +424,7 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
|
|||
# up
|
||||
reversed_block_out_channels = list(reversed(block_out_channels))
|
||||
reversed_attention_head_dim = list(reversed(attention_head_dim))
|
||||
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
||||
only_cross_attention = list(reversed(only_cross_attention))
|
||||
|
||||
output_channel = reversed_block_out_channels[0]
|
||||
|
@ -420,12 +448,12 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
|
|||
in_channels=input_channel,
|
||||
out_channels=output_channel,
|
||||
prev_output_channel=prev_output_channel,
|
||||
temb_channels=time_embed_dim,
|
||||
temb_channels=blocks_time_embed_dim,
|
||||
add_upsample=add_upsample,
|
||||
resnet_eps=norm_eps,
|
||||
resnet_act_fn=act_fn,
|
||||
resnet_groups=norm_num_groups,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
cross_attention_dim=reversed_cross_attention_dim[i],
|
||||
attn_num_head_channels=reversed_attention_head_dim[i],
|
||||
dual_cross_attention=dual_cross_attention,
|
||||
use_linear_projection=use_linear_projection,
|
||||
|
@ -661,7 +689,11 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
|
|||
class_labels = self.time_proj(class_labels)
|
||||
|
||||
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
||||
emb = emb + class_emb
|
||||
|
||||
if self.config.class_embeddings_concat:
|
||||
emb = torch.cat([emb, class_emb], dim=-1)
|
||||
else:
|
||||
emb = emb + class_emb
|
||||
|
||||
# 2. pre-process
|
||||
sample = self.conv_in(sample)
|
||||
|
|
|
@ -32,6 +32,21 @@ class AltDiffusionPipeline(metaclass=DummyObject):
|
|||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class AudioLDMPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class CycleDiffusionPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
|
|
|
@ -199,6 +199,74 @@ class UNet2DConditionModelTests(ModelTesterMixin, unittest.TestCase):
|
|||
expected_shape = inputs_dict["sample"].shape
|
||||
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
|
||||
|
||||
def test_model_with_cross_attention_dim_tuple(self):
|
||||
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
||||
|
||||
init_dict["cross_attention_dim"] = (32, 32)
|
||||
|
||||
model = self.model_class(**init_dict)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
with torch.no_grad():
|
||||
output = model(**inputs_dict)
|
||||
|
||||
if isinstance(output, dict):
|
||||
output = output.sample
|
||||
|
||||
self.assertIsNotNone(output)
|
||||
expected_shape = inputs_dict["sample"].shape
|
||||
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
|
||||
|
||||
def test_model_with_simple_projection(self):
|
||||
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
||||
|
||||
batch_size, _, _, sample_size = inputs_dict["sample"].shape
|
||||
|
||||
init_dict["class_embed_type"] = "simple_projection"
|
||||
init_dict["projection_class_embeddings_input_dim"] = sample_size
|
||||
|
||||
inputs_dict["class_labels"] = floats_tensor((batch_size, sample_size)).to(torch_device)
|
||||
|
||||
model = self.model_class(**init_dict)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
with torch.no_grad():
|
||||
output = model(**inputs_dict)
|
||||
|
||||
if isinstance(output, dict):
|
||||
output = output.sample
|
||||
|
||||
self.assertIsNotNone(output)
|
||||
expected_shape = inputs_dict["sample"].shape
|
||||
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
|
||||
|
||||
def test_model_with_class_embeddings_concat(self):
|
||||
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
||||
|
||||
batch_size, _, _, sample_size = inputs_dict["sample"].shape
|
||||
|
||||
init_dict["class_embed_type"] = "simple_projection"
|
||||
init_dict["projection_class_embeddings_input_dim"] = sample_size
|
||||
init_dict["class_embeddings_concat"] = True
|
||||
|
||||
inputs_dict["class_labels"] = floats_tensor((batch_size, sample_size)).to(torch_device)
|
||||
|
||||
model = self.model_class(**init_dict)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
with torch.no_grad():
|
||||
output = model(**inputs_dict)
|
||||
|
||||
if isinstance(output, dict):
|
||||
output = output.sample
|
||||
|
||||
self.assertIsNotNone(output)
|
||||
expected_shape = inputs_dict["sample"].shape
|
||||
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
|
||||
|
||||
def test_model_attention_slicing(self):
|
||||
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
||||
|
||||
|
|
|
@ -103,6 +103,19 @@ UNCONDITIONAL_AUDIO_GENERATION_PARAMS = frozenset(["batch_size"])
|
|||
|
||||
UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS = frozenset([])
|
||||
|
||||
TEXT_TO_AUDIO_PARAMS = frozenset(
|
||||
[
|
||||
"prompt",
|
||||
"audio_length_in_s",
|
||||
"guidance_scale",
|
||||
"negative_prompt",
|
||||
"prompt_embeds",
|
||||
"negative_prompt_embeds",
|
||||
"cross_attention_kwargs",
|
||||
]
|
||||
)
|
||||
|
||||
TEXT_TO_AUDIO_BATCH_PARAMS = frozenset(["prompt", "negative_prompt"])
|
||||
TOKENS_TO_AUDIO_GENERATION_PARAMS = frozenset(["input_tokens"])
|
||||
|
||||
TOKENS_TO_AUDIO_GENERATION_BATCH_PARAMS = frozenset(["input_tokens"])
|
||||
|
|
|
@ -0,0 +1,416 @@
|
|||
# coding=utf-8
|
||||
# Copyright 2023 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import gc
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from transformers import (
|
||||
ClapTextConfig,
|
||||
ClapTextModelWithProjection,
|
||||
RobertaTokenizer,
|
||||
SpeechT5HifiGan,
|
||||
SpeechT5HifiGanConfig,
|
||||
)
|
||||
|
||||
from diffusers import (
|
||||
AudioLDMPipeline,
|
||||
AutoencoderKL,
|
||||
DDIMScheduler,
|
||||
LMSDiscreteScheduler,
|
||||
PNDMScheduler,
|
||||
UNet2DConditionModel,
|
||||
)
|
||||
from diffusers.utils import slow, torch_device
|
||||
|
||||
from ...pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS
|
||||
from ...test_pipelines_common import PipelineTesterMixin
|
||||
|
||||
|
||||
class AudioLDMPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
pipeline_class = AudioLDMPipeline
|
||||
params = TEXT_TO_AUDIO_PARAMS
|
||||
batch_params = TEXT_TO_AUDIO_BATCH_PARAMS
|
||||
required_optional_params = frozenset(
|
||||
[
|
||||
"num_inference_steps",
|
||||
"num_waveforms_per_prompt",
|
||||
"generator",
|
||||
"latents",
|
||||
"output_type",
|
||||
"return_dict",
|
||||
"callback",
|
||||
"callback_steps",
|
||||
]
|
||||
)
|
||||
|
||||
def get_dummy_components(self):
|
||||
torch.manual_seed(0)
|
||||
unet = UNet2DConditionModel(
|
||||
block_out_channels=(32, 64),
|
||||
layers_per_block=2,
|
||||
sample_size=32,
|
||||
in_channels=4,
|
||||
out_channels=4,
|
||||
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
||||
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
||||
cross_attention_dim=(32, 64),
|
||||
class_embed_type="simple_projection",
|
||||
projection_class_embeddings_input_dim=32,
|
||||
class_embeddings_concat=True,
|
||||
)
|
||||
scheduler = DDIMScheduler(
|
||||
beta_start=0.00085,
|
||||
beta_end=0.012,
|
||||
beta_schedule="scaled_linear",
|
||||
clip_sample=False,
|
||||
set_alpha_to_one=False,
|
||||
)
|
||||
torch.manual_seed(0)
|
||||
vae = AutoencoderKL(
|
||||
block_out_channels=[32, 64],
|
||||
in_channels=1,
|
||||
out_channels=1,
|
||||
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
||||
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
||||
latent_channels=4,
|
||||
)
|
||||
torch.manual_seed(0)
|
||||
text_encoder_config = ClapTextConfig(
|
||||
bos_token_id=0,
|
||||
eos_token_id=2,
|
||||
hidden_size=32,
|
||||
intermediate_size=37,
|
||||
layer_norm_eps=1e-05,
|
||||
num_attention_heads=4,
|
||||
num_hidden_layers=5,
|
||||
pad_token_id=1,
|
||||
vocab_size=1000,
|
||||
projection_dim=32,
|
||||
)
|
||||
text_encoder = ClapTextModelWithProjection(text_encoder_config)
|
||||
tokenizer = RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta", model_max_length=77)
|
||||
|
||||
vocoder_config = SpeechT5HifiGanConfig(
|
||||
model_in_dim=8,
|
||||
sampling_rate=16000,
|
||||
upsample_initial_channel=16,
|
||||
upsample_rates=[2, 2],
|
||||
upsample_kernel_sizes=[4, 4],
|
||||
resblock_kernel_sizes=[3, 7],
|
||||
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]],
|
||||
normalize_before=False,
|
||||
)
|
||||
|
||||
vocoder = SpeechT5HifiGan(vocoder_config)
|
||||
|
||||
components = {
|
||||
"unet": unet,
|
||||
"scheduler": scheduler,
|
||||
"vae": vae,
|
||||
"text_encoder": text_encoder,
|
||||
"tokenizer": tokenizer,
|
||||
"vocoder": vocoder,
|
||||
}
|
||||
return components
|
||||
|
||||
def get_dummy_inputs(self, device, seed=0):
|
||||
if str(device).startswith("mps"):
|
||||
generator = torch.manual_seed(seed)
|
||||
else:
|
||||
generator = torch.Generator(device=device).manual_seed(seed)
|
||||
inputs = {
|
||||
"prompt": "A hammer hitting a wooden surface",
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"guidance_scale": 6.0,
|
||||
}
|
||||
return inputs
|
||||
|
||||
def test_audioldm_ddim(self):
|
||||
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
||||
|
||||
components = self.get_dummy_components()
|
||||
audioldm_pipe = AudioLDMPipeline(**components)
|
||||
audioldm_pipe = audioldm_pipe.to(torch_device)
|
||||
audioldm_pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
output = audioldm_pipe(**inputs)
|
||||
audio = output.audios[0]
|
||||
|
||||
assert audio.ndim == 1
|
||||
assert len(audio) == 256
|
||||
|
||||
audio_slice = audio[:10]
|
||||
expected_slice = np.array(
|
||||
[-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033]
|
||||
)
|
||||
|
||||
assert np.abs(audio_slice - expected_slice).max() < 1e-2
|
||||
|
||||
def test_audioldm_prompt_embeds(self):
|
||||
components = self.get_dummy_components()
|
||||
audioldm_pipe = AudioLDMPipeline(**components)
|
||||
audioldm_pipe = audioldm_pipe.to(torch_device)
|
||||
audioldm_pipe = audioldm_pipe.to(torch_device)
|
||||
audioldm_pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
inputs["prompt"] = 3 * [inputs["prompt"]]
|
||||
|
||||
# forward
|
||||
output = audioldm_pipe(**inputs)
|
||||
audio_1 = output.audios[0]
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
prompt = 3 * [inputs.pop("prompt")]
|
||||
|
||||
text_inputs = audioldm_pipe.tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=audioldm_pipe.tokenizer.model_max_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
text_inputs = text_inputs["input_ids"].to(torch_device)
|
||||
|
||||
prompt_embeds = audioldm_pipe.text_encoder(
|
||||
text_inputs,
|
||||
)
|
||||
prompt_embeds = prompt_embeds.text_embeds
|
||||
# additional L_2 normalization over each hidden-state
|
||||
prompt_embeds = F.normalize(prompt_embeds, dim=-1)
|
||||
|
||||
inputs["prompt_embeds"] = prompt_embeds
|
||||
|
||||
# forward
|
||||
output = audioldm_pipe(**inputs)
|
||||
audio_2 = output.audios[0]
|
||||
|
||||
assert np.abs(audio_1 - audio_2).max() < 1e-2
|
||||
|
||||
def test_audioldm_negative_prompt_embeds(self):
|
||||
components = self.get_dummy_components()
|
||||
audioldm_pipe = AudioLDMPipeline(**components)
|
||||
audioldm_pipe = audioldm_pipe.to(torch_device)
|
||||
audioldm_pipe = audioldm_pipe.to(torch_device)
|
||||
audioldm_pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
negative_prompt = 3 * ["this is a negative prompt"]
|
||||
inputs["negative_prompt"] = negative_prompt
|
||||
inputs["prompt"] = 3 * [inputs["prompt"]]
|
||||
|
||||
# forward
|
||||
output = audioldm_pipe(**inputs)
|
||||
audio_1 = output.audios[0]
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
prompt = 3 * [inputs.pop("prompt")]
|
||||
|
||||
embeds = []
|
||||
for p in [prompt, negative_prompt]:
|
||||
text_inputs = audioldm_pipe.tokenizer(
|
||||
p,
|
||||
padding="max_length",
|
||||
max_length=audioldm_pipe.tokenizer.model_max_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
text_inputs = text_inputs["input_ids"].to(torch_device)
|
||||
|
||||
text_embeds = audioldm_pipe.text_encoder(
|
||||
text_inputs,
|
||||
)
|
||||
text_embeds = text_embeds.text_embeds
|
||||
# additional L_2 normalization over each hidden-state
|
||||
text_embeds = F.normalize(text_embeds, dim=-1)
|
||||
|
||||
embeds.append(text_embeds)
|
||||
|
||||
inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds
|
||||
|
||||
# forward
|
||||
output = audioldm_pipe(**inputs)
|
||||
audio_2 = output.audios[0]
|
||||
|
||||
assert np.abs(audio_1 - audio_2).max() < 1e-2
|
||||
|
||||
def test_audioldm_negative_prompt(self):
|
||||
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
||||
components = self.get_dummy_components()
|
||||
components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
|
||||
audioldm_pipe = AudioLDMPipeline(**components)
|
||||
audioldm_pipe = audioldm_pipe.to(device)
|
||||
audioldm_pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
negative_prompt = "egg cracking"
|
||||
output = audioldm_pipe(**inputs, negative_prompt=negative_prompt)
|
||||
audio = output.audios[0]
|
||||
|
||||
assert audio.ndim == 1
|
||||
assert len(audio) == 256
|
||||
|
||||
audio_slice = audio[:10]
|
||||
expected_slice = np.array(
|
||||
[-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032]
|
||||
)
|
||||
|
||||
assert np.abs(audio_slice - expected_slice).max() < 1e-2
|
||||
|
||||
def test_audioldm_num_waveforms_per_prompt(self):
|
||||
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
||||
components = self.get_dummy_components()
|
||||
components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
|
||||
audioldm_pipe = AudioLDMPipeline(**components)
|
||||
audioldm_pipe = audioldm_pipe.to(device)
|
||||
audioldm_pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
prompt = "A hammer hitting a wooden surface"
|
||||
|
||||
# test num_waveforms_per_prompt=1 (default)
|
||||
audios = audioldm_pipe(prompt, num_inference_steps=2).audios
|
||||
|
||||
assert audios.shape == (1, 256)
|
||||
|
||||
# test num_waveforms_per_prompt=1 (default) for batch of prompts
|
||||
batch_size = 2
|
||||
audios = audioldm_pipe([prompt] * batch_size, num_inference_steps=2).audios
|
||||
|
||||
assert audios.shape == (batch_size, 256)
|
||||
|
||||
# test num_waveforms_per_prompt for single prompt
|
||||
num_waveforms_per_prompt = 2
|
||||
audios = audioldm_pipe(prompt, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt).audios
|
||||
|
||||
assert audios.shape == (num_waveforms_per_prompt, 256)
|
||||
|
||||
# test num_waveforms_per_prompt for batch of prompts
|
||||
batch_size = 2
|
||||
audios = audioldm_pipe(
|
||||
[prompt] * batch_size, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt
|
||||
).audios
|
||||
|
||||
assert audios.shape == (batch_size * num_waveforms_per_prompt, 256)
|
||||
|
||||
def test_audioldm_audio_length_in_s(self):
|
||||
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
||||
components = self.get_dummy_components()
|
||||
audioldm_pipe = AudioLDMPipeline(**components)
|
||||
audioldm_pipe = audioldm_pipe.to(torch_device)
|
||||
audioldm_pipe.set_progress_bar_config(disable=None)
|
||||
vocoder_sampling_rate = audioldm_pipe.vocoder.config.sampling_rate
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
output = audioldm_pipe(audio_length_in_s=0.016, **inputs)
|
||||
audio = output.audios[0]
|
||||
|
||||
assert audio.ndim == 1
|
||||
assert len(audio) / vocoder_sampling_rate == 0.016
|
||||
|
||||
output = audioldm_pipe(audio_length_in_s=0.032, **inputs)
|
||||
audio = output.audios[0]
|
||||
|
||||
assert audio.ndim == 1
|
||||
assert len(audio) / vocoder_sampling_rate == 0.032
|
||||
|
||||
def test_audioldm_vocoder_model_in_dim(self):
|
||||
components = self.get_dummy_components()
|
||||
audioldm_pipe = AudioLDMPipeline(**components)
|
||||
audioldm_pipe = audioldm_pipe.to(torch_device)
|
||||
audioldm_pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
prompt = ["hey"]
|
||||
|
||||
output = audioldm_pipe(prompt, num_inference_steps=1)
|
||||
audio_shape = output.audios.shape
|
||||
assert audio_shape == (1, 256)
|
||||
|
||||
config = audioldm_pipe.vocoder.config
|
||||
config.model_in_dim *= 2
|
||||
audioldm_pipe.vocoder = SpeechT5HifiGan(config).to(torch_device)
|
||||
output = audioldm_pipe(prompt, num_inference_steps=1)
|
||||
audio_shape = output.audios.shape
|
||||
# waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram
|
||||
assert audio_shape == (1, 256)
|
||||
|
||||
def test_attention_slicing_forward_pass(self):
|
||||
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=False)
|
||||
|
||||
def test_inference_batch_single_identical(self):
|
||||
self._test_inference_batch_single_identical(test_mean_pixel_difference=False)
|
||||
|
||||
|
||||
@slow
|
||||
# @require_torch_gpu
|
||||
class AudioLDMPipelineSlowTests(unittest.TestCase):
|
||||
def tearDown(self):
|
||||
super().tearDown()
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
|
||||
generator = torch.Generator(device=generator_device).manual_seed(seed)
|
||||
latents = np.random.RandomState(seed).standard_normal((1, 8, 128, 16))
|
||||
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
|
||||
inputs = {
|
||||
"prompt": "A hammer hitting a wooden surface",
|
||||
"latents": latents,
|
||||
"generator": generator,
|
||||
"num_inference_steps": 3,
|
||||
"guidance_scale": 2.5,
|
||||
}
|
||||
return inputs
|
||||
|
||||
def test_audioldm(self):
|
||||
audioldm_pipe = AudioLDMPipeline.from_pretrained("cvssp/audioldm")
|
||||
audioldm_pipe = audioldm_pipe.to(torch_device)
|
||||
audioldm_pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_inputs(torch_device)
|
||||
inputs["num_inference_steps"] = 25
|
||||
audio = audioldm_pipe(**inputs).audios[0]
|
||||
|
||||
assert audio.ndim == 1
|
||||
assert len(audio) == 81920
|
||||
|
||||
audio_slice = audio[77230:77240]
|
||||
expected_slice = np.array(
|
||||
[-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315]
|
||||
)
|
||||
max_diff = np.abs(expected_slice - audio_slice).max()
|
||||
assert max_diff < 1e-2
|
||||
|
||||
def test_audioldm_lms(self):
|
||||
audioldm_pipe = AudioLDMPipeline.from_pretrained("cvssp/audioldm")
|
||||
audioldm_pipe.scheduler = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config)
|
||||
audioldm_pipe = audioldm_pipe.to(torch_device)
|
||||
audioldm_pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_inputs(torch_device)
|
||||
audio = audioldm_pipe(**inputs).audios[0]
|
||||
|
||||
assert audio.ndim == 1
|
||||
assert len(audio) == 81920
|
||||
|
||||
audio_slice = audio[27780:27790]
|
||||
expected_slice = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212])
|
||||
max_diff = np.abs(expected_slice - audio_slice).max()
|
||||
assert max_diff < 1e-2
|
Loading…
Reference in New Issue