Merge branch 'main' of github.com:huggingface/diffusers

 Conflicts:
	src/diffusers/__init__.py
	src/diffusers/models/__init__.py
This commit is contained in:
anton-l 2022-06-08 11:48:25 +02:00
commit bb98a5b709
14 changed files with 1622 additions and 40 deletions

View File

@ -0,0 +1,28 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Denoising Diffusion Implicit Models (DDIM)
## Overview
DDPM was proposed in [Denoising Diffusion Implicit Models](https://arxiv.org/abs/2010.02502) by *Jiaming Song, Chenlin Meng, Stefano Ermon*
The abstract from the paper is the following:
*Denoising diffusion probabilistic models (DDPMs) have achieved high quality image generation without adversarial training, yet they require simulating a Markov chain for many steps to produce a sample. To accelerate sampling, we present denoising diffusion implicit models (DDIMs), a more efficient class of iterative implicit probabilistic models with the same training procedure as DDPMs. In DDPMs, the generative process is defined as the reverse of a Markovian diffusion process. We construct a class of non-Markovian diffusion processes that lead to the same training objective, but whose reverse process can be much faster to sample from. We empirically demonstrate that DDIMs can produce high quality samples 10× to 50× faster in terms of wall-clock time compared to DDPMs, allow us to trade off computation for sample quality, and can perform semantically meaningful image interpolation directly in the latent space.*
Tips:
- ...
- ...
This model was contributed by [???](https://huggingface.co/???). The original code can be found [here](https://github.com/hojonathanho/diffusion).

View File

@ -0,0 +1,71 @@
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from diffusers import DiffusionPipeline
import tqdm
import torch
def compute_alpha(beta, t):
beta = torch.cat([torch.zeros(1).to(beta.device), beta], dim=0)
a = (1 - beta).cumprod(dim=0).index_select(0, t + 1).view(-1, 1, 1, 1)
return a
class DDIM(DiffusionPipeline):
def __init__(self, unet, noise_scheduler):
super().__init__()
self.register_modules(unet=unet, noise_scheduler=noise_scheduler)
def __call__(self, batch_size=1, generator=None, torch_device=None, eta=0.0, inference_time_steps=50):
# eta is η in paper
if torch_device is None:
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
num_timesteps = self.noise_scheduler.num_timesteps
seq = range(0, num_timesteps, num_timesteps // inference_time_steps)
b = self.noise_scheduler.betas.to(torch_device)
self.unet.to(torch_device)
x = self.noise_scheduler.sample_noise((batch_size, self.unet.in_channels, self.unet.resolution, self.unet.resolution), device=torch_device, generator=generator)
with torch.no_grad():
n = batch_size
seq_next = [-1] + list(seq[:-1])
x0_preds = []
xs = [x]
for i, j in zip(reversed(seq), reversed(seq_next)):
print(i)
t = (torch.ones(n) * i).to(x.device)
next_t = (torch.ones(n) * j).to(x.device)
at = compute_alpha(b, t.long())
at_next = compute_alpha(b, next_t.long())
xt = xs[-1].to('cuda')
et = self.unet(xt, t)
x0_t = (xt - et * (1 - at).sqrt()) / at.sqrt()
x0_preds.append(x0_t.to('cpu'))
# eta
c1 = (
eta * ((1 - at / at_next) * (1 - at_next) / (1 - at)).sqrt()
)
c2 = ((1 - at_next) - c1 ** 2).sqrt()
xt_next = at_next.sqrt() * x0_t + c1 * torch.randn_like(x) + c2 * et
xs.append(xt_next.to('cpu'))
return xt_next

17
models/vision/ddim/run_ddpm.py Executable file
View File

@ -0,0 +1,17 @@
#!/usr/bin/env python3
import torch
from diffusers import GaussianDDPMScheduler, UNetModel
model = UNetModel(dim=64, dim_mults=(1, 2, 4, 8))
diffusion = GaussianDDPMScheduler(model, image_size=128, timesteps=1000, loss_type="l1") # number of steps # L1 or L2
training_images = torch.randn(8, 3, 128, 128) # your images need to be normalized from a range of -1 to +1
loss = diffusion(training_images)
loss.backward()
# after a lot of training
sampled_images = diffusion.sample(batch_size=4)
sampled_images.shape # (4, 3, 128, 128)

View File

@ -0,0 +1,23 @@
#!/usr/bin/env python3
# !pip install diffusers
from modeling_ddim import DDIM
import PIL.Image
import numpy as np
model_id = "fusing/ddpm-cifar10"
model_id = "fusing/ddpm-lsun-bedroom"
# load model and scheduler
ddpm = DDIM.from_pretrained(model_id)
# run pipeline in inference (sample random noise and denoise)
image = ddpm()
# process image to PIL
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])
# save image
image_pil.save("/home/patrick/images/show.png")

View File

@ -21,8 +21,6 @@ import torch
class DDPM(DiffusionPipeline):
modeling_file = "modeling_ddpm.py"
def __init__(self, unet, noise_scheduler):
super().__init__()
self.register_modules(unet=unet, noise_scheduler=noise_scheduler)

View File

@ -28,11 +28,11 @@ To create the package for pypi.
3. Unpin specific versions from setup.py that use a git install.
4. Checkout the release branch (v<RELEASE>-release, for example v4.19-release), and commit these changes with the
message: "Release: <VERSION>" and push.
message: "Release: <RELEASE>" and push.
5. Wait for the tests on main to be completed and be green (otherwise revert and fix bugs)
6. Add a tag in git to mark the release: "git tag v<VERSION> -m 'Adds tag v<VERSION> for pypi' "
6. Add a tag in git to mark the release: "git tag v<RELEASE> -m 'Adds tag v<RELEASE> for pypi' "
Push the tag to git: git push --tags origin v<RELEASE>-release
7. Build both the sources and the wheel. Do not change anything in setup.py between
@ -189,7 +189,7 @@ extras["sagemaker"] = [
setup(
name="diffusers",
version="0.0.1",
version="0.0.2",
description="Diffusers",
long_description=open("README.md", "r", encoding="utf-8").read(),
long_description_content_type="text/markdown",
@ -222,8 +222,8 @@ setup(
# Release checklist
# 1. Change the version in __init__.py and setup.py.
# 2. Commit these changes with the message: "Release: VERSION"
# 3. Add a tag in git to mark the release: "git tag VERSION -m 'Adds tag VERSION for pypi' "
# 2. Commit these changes with the message: "Release: Release"
# 3. Add a tag in git to mark the release: "git tag RELEASE -m 'Adds tag RELEASE for pypi' "
# Push the tag to git: git push --tags origin main
# 4. Run the following commands in the top-level directory:
# python setup.py bdist_wheel

View File

@ -7,6 +7,7 @@ __version__ = "0.0.1"
from .modeling_utils import ModelMixin
from .models.unet import UNetModel
from .models.unet_glide import UNetGLIDEModel
from .models.unet_ldm import UNetLDMModel
from .models.clip_text_transformer import CLIPTextModel
from .pipeline_utils import DiffusionPipeline
from .schedulers.gaussian_ddpm import GaussianDDPMScheduler

View File

@ -18,4 +18,5 @@
from .unet import UNetModel
from .unet_glide import UNetGLIDEModel
from .unet_ldm import UNetLDMModel
from .clip_text_transformer import CLIPTextModel

File diff suppressed because it is too large Load Diff

View File

@ -57,14 +57,13 @@ class DiffusionPipeline(ConfigMixin):
class_name = module.__class__.__name__
register_dict = {name: (library, class_name)}
# save model index config
self.register(**register_dict)
# set models
setattr(self, name, module)
register_dict = {"_module" : self.__module__.split(".")[-1] + ".py"}
self.register(**register_dict)
@ -103,15 +102,17 @@ class DiffusionPipeline(ConfigMixin):
cached_folder = pretrained_model_name_or_path
config_dict = cls.get_config_dict(cached_folder)
module = config_dict["_module"]
class_name_ = config_dict["_class_name"]
if class_name_ == cls.__name__:
module_candidate = config_dict["_module"]
# if we load from explicit class, let's use it
if cls != DiffusionPipeline:
pipeline_class = cls
else:
# else we need to load the correct module from the Hub
class_name_ = config_dict["_class_name"]
module = module_candidate
pipeline_class = get_class_from_dynamic_module(cached_folder, module, class_name_, cached_folder)
init_dict, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
@ -120,8 +121,9 @@ class DiffusionPipeline(ConfigMixin):
for name, (library_name, class_name) in init_dict.items():
importable_classes = LOADABLE_CLASSES[library_name]
if library_name == module:
if library_name == module_candidate:
# TODO(Suraj)
# for vq
pass
library = importlib.import_module(library_name)

View File

@ -0,0 +1,102 @@
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import math
from torch import nn
from ..configuration_utils import ConfigMixin
from .schedulers_utils import linear_beta_schedule, betas_for_alpha_bar
SAMPLING_CONFIG_NAME = "scheduler_config.json"
class GaussianDDPMScheduler(nn.Module, ConfigMixin):
config_name = SAMPLING_CONFIG_NAME
def __init__(
self,
timesteps=1000,
beta_start=0.0001,
beta_end=0.02,
beta_schedule="linear",
variance_type="fixed_small",
):
super().__init__()
self.register(
timesteps=timesteps,
beta_start=beta_start,
beta_end=beta_end,
beta_schedule=beta_schedule,
variance_type=variance_type,
)
self.num_timesteps = int(timesteps)
if beta_schedule == "linear":
betas = linear_beta_schedule(timesteps, beta_start=beta_start, beta_end=beta_end)
elif beta_schedule == "squaredcos_cap_v2":
# GLIDE cosine schedule
betas = betas_for_alpha_bar(
timesteps,
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
)
else:
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
alphas = 1.0 - betas
alphas_cumprod = torch.cumprod(alphas, axis=0)
alphas_cumprod_prev = torch.nn.functional.pad(alphas_cumprod[:-1], (1, 0), value=1.0)
variance = betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod)
if variance_type == "fixed_small":
log_variance = torch.log(variance.clamp(min=1e-20))
elif variance_type == "fixed_large":
log_variance = torch.log(torch.cat([variance[1:2], betas[1:]], dim=0))
self.register_buffer("betas", betas.to(torch.float32))
self.register_buffer("alphas", alphas.to(torch.float32))
self.register_buffer("alphas_cumprod", alphas_cumprod.to(torch.float32))
self.register_buffer("log_variance", log_variance.to(torch.float32))
def get_alpha(self, time_step):
return self.alphas[time_step]
def get_beta(self, time_step):
return self.betas[time_step]
def get_alpha_prod(self, time_step):
if time_step < 0:
return torch.tensor(1.0)
return self.alphas_cumprod[time_step]
def sample_variance(self, time_step, shape, device, generator=None):
variance = self.log_variance[time_step]
nonzero_mask = torch.tensor([1 - (time_step == 0)], device=device).float()[None, :]
noise = self.sample_noise(shape, device=device, generator=generator)
sampled_variance = nonzero_mask * (0.5 * variance).exp()
sampled_variance = sampled_variance * noise
return sampled_variance
def sample_noise(self, shape, device, generator=None):
# always sample on CPU to be deterministic
return torch.randn(shape, generator=generator).to(device)
def __len__(self):
return self.num_timesteps

View File

@ -16,35 +16,12 @@ import math
from torch import nn
from ..configuration_utils import ConfigMixin
from .schedulers_utils import linear_beta_schedule, betas_for_alpha_bar
SAMPLING_CONFIG_NAME = "scheduler_config.json"
def linear_beta_schedule(timesteps, beta_start, beta_end):
return torch.linspace(beta_start, beta_end, timesteps, dtype=torch.float64)
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
"""
Create a beta schedule that discretizes the given alpha_t_bar function,
which defines the cumulative product of (1-beta) over time from t = [0,1].
:param num_diffusion_timesteps: the number of betas to produce.
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
produces the cumulative product of (1-beta) up to that
part of the diffusion process.
:param max_beta: the maximum beta to use; use values lower than 1 to
prevent singularities.
"""
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
return torch.tensor(betas, dtype=torch.float64)
class GaussianDDPMScheduler(nn.Module, ConfigMixin):
config_name = SAMPLING_CONFIG_NAME

View File

@ -0,0 +1,38 @@
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
def linear_beta_schedule(timesteps, beta_start, beta_end):
return torch.linspace(beta_start, beta_end, timesteps, dtype=torch.float64)
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
"""
Create a beta schedule that discretizes the given alpha_t_bar function,
which defines the cumulative product of (1-beta) over time from t = [0,1].
:param num_diffusion_timesteps: the number of betas to produce.
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
produces the cumulative product of (1-beta) up to that
part of the diffusion process.
:param max_beta: the maximum beta to use; use values lower than 1 to
prevent singularities.
"""
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
return torch.tensor(betas, dtype=torch.float64)

View File

@ -25,6 +25,7 @@ import torch
from diffusers import GaussianDDPMScheduler, UNetModel
from diffusers.pipeline_utils import DiffusionPipeline
from models.vision.ddpm.modeling_ddpm import DDPM
from models.vision.ddim.modeling_ddim import DDIM
global_rng = random.Random()
@ -205,6 +206,7 @@ class SamplerTesterMixin(unittest.TestCase):
class PipelineTesterMixin(unittest.TestCase):
def test_from_pretrained_save_pretrained(self):
# 1. Load models
model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
@ -241,3 +243,31 @@ class PipelineTesterMixin(unittest.TestCase):
new_image = ddpm_from_hub(generator=generator)
assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
@slow
def test_ddpm_cifar10(self):
generator = torch.manual_seed(0)
model_id = "fusing/ddpm-cifar10"
ddpm = DDPM.from_pretrained(model_id)
image = ddpm(generator=generator)
image_slice = image[0, -1, -3:, -3:].cpu()
assert image.shape == (1, 3, 32, 32)
expected_slice = torch.tensor([0.2250, 0.3375, 0.2360, 0.0930, 0.3440, 0.3156, 0.1937, 0.3585, 0.1761])
assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
@slow
def test_ddim_cifar10(self):
generator = torch.manual_seed(0)
model_id = "fusing/ddpm-cifar10"
ddim = DDIM.from_pretrained(model_id)
image = ddim(generator=generator, eta=0.0)
image_slice = image[0, -1, -3:, -3:].cpu()
assert image.shape == (1, 3, 32, 32)
expected_slice = torch.tensor([-0.7688, -0.7690, -0.7597, -0.7660, -0.7713, -0.7531, -0.7009, -0.7098, -0.7350])
assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2