remove more dependencies

This commit is contained in:
Patrick von Platen 2022-06-25 00:53:55 +00:00
parent 49a81f9f1a
commit bc2d586dcb
2 changed files with 105 additions and 166 deletions

146
run.py
View File

@ -2,105 +2,14 @@
import numpy as np
import PIL
import torch
import ml_collections
#from configs.ve import ffhq_ncsnpp_continuous as configs
# from configs.ve import cifar10_ncsnpp_continuous as configs
# ffhq_ncsnpp_continuous config
def get_config():
config = ml_collections.ConfigDict()
# training
config.training = training = ml_collections.ConfigDict()
training.batch_size = 8
training.n_iters = 2400001
training.snapshot_freq = 50000
training.log_freq = 50
training.eval_freq = 100
training.snapshot_freq_for_preemption = 5000
training.snapshot_sampling = True
training.sde = 'vesde'
training.continuous = True
training.likelihood_weighting = False
training.reduce_mean = True
# sampling
config.sampling = sampling = ml_collections.ConfigDict()
sampling.method = 'pc'
sampling.predictor = 'reverse_diffusion'
sampling.corrector = 'langevin'
sampling.probability_flow = False
sampling.snr = 0.15
sampling.n_steps_each = 1
sampling.noise_removal = True
# eval
config.eval = evaluate = ml_collections.ConfigDict()
evaluate.batch_size = 1024
evaluate.num_samples = 50000
evaluate.begin_ckpt = 1
evaluate.end_ckpt = 96
# data
config.data = data = ml_collections.ConfigDict()
data.dataset = 'FFHQ'
data.image_size = 1024
data.centered = False
data.random_flip = True
data.uniform_dequantization = False
data.num_channels = 3
# Plug in your own path to the tfrecords file.
data.tfrecords_path = '/raid/song/ffhq-dataset/ffhq/ffhq-r10.tfrecords'
# model
config.model = model = ml_collections.ConfigDict()
model.name = 'ncsnpp'
model.scale_by_sigma = True
model.sigma_max = 1348
model.num_scales = 2000
model.ema_rate = 0.9999
model.sigma_min = 0.01
model.normalization = 'GroupNorm'
model.nonlinearity = 'swish'
model.nf = 16
model.ch_mult = (1, 2, 4, 8, 16, 32, 32, 32)
model.num_res_blocks = 1
model.attn_resolutions = (16,)
model.dropout = 0.
model.resamp_with_conv = True
model.conditional = True
model.fir = True
model.fir_kernel = [1, 3, 3, 1]
model.skip_rescale = True
model.resblock_type = 'biggan'
model.progressive = 'output_skip'
model.progressive_input = 'input_skip'
model.progressive_combine = 'sum'
model.attention_type = 'ddpm'
model.init_scale = 0.
model.fourier_scale = 16
model.conv_size = 3
model.embedding_type = 'fourier'
# optim
config.optim = optim = ml_collections.ConfigDict()
optim.weight_decay = 0
optim.optimizer = 'Adam'
optim.lr = 2e-4
optim.beta1 = 0.9
optim.amsgrad = False
optim.eps = 1e-8
optim.warmup = 5000
optim.grad_clip = 1.
config.seed = 42
config.device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
return config
device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
torch.backends.cuda.matmul.allow_tf32 = False
torch.manual_seed(3)
torch.manual_seed(0)
class NewReverseDiffusionPredictor:
@ -182,47 +91,26 @@ def save_image(x):
# Note usually we need to restore ema etc...
# ema restored checkpoint used from below
config = get_config()
sigma_min, sigma_max = config.model.sigma_min, config.model.sigma_max
N = config.model.num_scales
N = 2
sigma_min = 0.01
sigma_max = 1348
sampling_eps = 1e-5
batch_size = 1 #@param {"type":"integer"}
config.training.batch_size = batch_size
config.eval.batch_size = batch_size
batch_size = 1
centered = False
from diffusers import NCSNpp
model = NCSNpp(config).to(config.device)
model = NCSNpp.from_pretrained("/home/patrick/ffhq_ncsnpp").to(device)
model = torch.nn.DataParallel(model)
loaded_state = torch.load("../score_sde_pytorch/ffhq_1024_ncsnpp_continuous_ema.pt")
del loaded_state["module.sigmas"]
model.load_state_dict(loaded_state, strict=False)
def get_data_inverse_scaler(config):
"""Inverse data normalizer."""
if config.data.centered:
# Rescale [-1, 1] to [0, 1]
return lambda x: (x + 1.) / 2.
else:
return lambda x: x
inverse_scaler = get_data_inverse_scaler(config)
img_size = config.data.image_size
channels = config.data.num_channels
img_size = model.module.config.image_size
channels = model.module.config.num_channels
shape = (batch_size, channels, img_size, img_size)
probability_flow = False
snr = 0.15 #@param {"type": "number"}
n_steps = 1#@param {"type": "integer"}
snr = 0.15
n_steps = 1
device = config.device
new_corrector = NewLangevinCorrector(score_fn=model, snr=snr, n_steps=n_steps, sigma_min=sigma_min, sigma_max=sigma_max)
new_predictor = NewReverseDiffusionPredictor(score_fn=model, sigma_min=sigma_min, sigma_max=sigma_max, N=N)
@ -238,10 +126,12 @@ with torch.no_grad():
x, x_mean = new_corrector.update_fn(x, vec_t)
x, x_mean = new_predictor.update_fn(x, vec_t)
x = inverse_scaler(x_mean)
x = x_mean
if centered:
x = (x + 1.) / 2.
save_image(x)
# save_image(x)
# for 5 cifar10
x_sum = 106071.9922
@ -260,4 +150,4 @@ def check_x_sum_x_mean(x, x_sum, x_mean):
assert (x.abs().mean() - x_mean).abs().cpu().item() < 1e-4, f"mean wrong {x.abs().mean()}"
#check_x_sum_x_mean(x, x_sum, x_mean)
check_x_sum_x_mean(x, x_sum, x_mean)

View File

@ -15,6 +15,9 @@
# helpers functions
from ..modeling_utils import ModelMixin
from ..configuration_utils import ConfigMixin
import functools
import math
@ -372,16 +375,16 @@ class NIN(nn.Module):
return y.permute(0, 3, 1, 2)
def get_act(config):
def get_act(nonlinearity):
"""Get activation functions from the config file."""
if config.model.nonlinearity.lower() == "elu":
if nonlinearity.lower() == "elu":
return nn.ELU()
elif config.model.nonlinearity.lower() == "relu":
elif nonlinearity.lower() == "relu":
return nn.ReLU()
elif config.model.nonlinearity.lower() == "lrelu":
elif nonlinearity.lower() == "lrelu":
return nn.LeakyReLU(negative_slope=0.2)
elif config.model.nonlinearity.lower() == "swish":
elif nonlinearity.lower() == "swish":
return nn.SiLU()
else:
raise NotImplementedError("activation function does not exist!")
@ -710,46 +713,93 @@ class ResnetBlockBigGANpp(nn.Module):
return (x + h) / np.sqrt(2.0)
class NCSNpp(nn.Module):
class NCSNpp(ModelMixin, ConfigMixin):
"""NCSN++ model"""
def __init__(self, config):
def __init__(
self,
centered=False,
image_size=1024,
num_channels=3,
attention_type="ddpm",
attn_resolutions=(16,),
ch_mult=(1, 2, 4, 8, 16, 32, 32, 32),
conditional=True,
conv_size=3,
dropout=0.0,
embedding_type="fourier",
fir=True,
fir_kernel=(1, 3, 3, 1),
fourier_scale=16,
init_scale=0.0,
nf=16,
nonlinearity="swish",
normalization="GroupNorm",
num_res_blocks=1,
progressive="output_skip",
progressive_combine="sum",
progressive_input="input_skip",
resamp_with_conv=True,
resblock_type="biggan",
scale_by_sigma=True,
skip_rescale=True,
continuous=True,
):
super().__init__()
self.config = config
self.act = act = get_act(config)
self.register_to_config(
centered=centered,
image_size=image_size,
num_channels=num_channels,
attention_type=attention_type,
attn_resolutions=attn_resolutions,
ch_mult=ch_mult,
conditional=conditional,
conv_size=conv_size,
dropout=dropout,
embedding_type=embedding_type,
fir=fir,
fir_kernel=fir_kernel,
fourier_scale=fourier_scale,
init_scale=init_scale,
nf=nf,
nonlinearity=nonlinearity,
normalization=normalization,
num_res_blocks=num_res_blocks,
progressive=progressive,
progressive_combine=progressive_combine,
progressive_input=progressive_input,
resamp_with_conv=resamp_with_conv,
resblock_type=resblock_type,
scale_by_sigma=scale_by_sigma,
skip_rescale=skip_rescale,
continuous=continuous,
)
self.act = act = get_act(nonlinearity)
# self.register_buffer('sigmas', torch.tensor(utils.get_sigmas(config)))
self.nf = nf = config.model.nf
ch_mult = config.model.ch_mult
self.num_res_blocks = num_res_blocks = config.model.num_res_blocks
self.attn_resolutions = attn_resolutions = config.model.attn_resolutions
dropout = config.model.dropout
resamp_with_conv = config.model.resamp_with_conv
self.num_resolutions = num_resolutions = len(ch_mult)
self.all_resolutions = all_resolutions = [config.data.image_size // (2**i) for i in range(num_resolutions)]
self.nf = nf
self.num_res_blocks = num_res_blocks
self.attn_resolutions = attn_resolutions
self.num_resolutions = len(ch_mult)
self.all_resolutions = all_resolutions = [image_size // (2**i) for i in range(self.num_resolutions)]
self.conditional = conditional = config.model.conditional # noise-conditional
fir = config.model.fir
fir_kernel = config.model.fir_kernel
self.skip_rescale = skip_rescale = config.model.skip_rescale
self.resblock_type = resblock_type = config.model.resblock_type.lower()
self.progressive = progressive = config.model.progressive.lower()
self.progressive_input = progressive_input = config.model.progressive_input.lower()
self.embedding_type = embedding_type = config.model.embedding_type.lower()
init_scale = config.model.init_scale
self.conditional = conditional
self.skip_rescale = skip_rescale
self.resblock_type = resblock_type
self.progressive = progressive
self.progressive_input = progressive_input
self.embedding_type = embedding_type
assert progressive in ["none", "output_skip", "residual"]
assert progressive_input in ["none", "input_skip", "residual"]
assert embedding_type in ["fourier", "positional"]
combine_method = config.model.progressive_combine.lower()
combine_method = progressive_combine.lower()
combiner = functools.partial(Combine, method=combine_method)
modules = []
# timestep/noise_level embedding; only for continuous training
if embedding_type == "fourier":
# Gaussian Fourier features embeddings.
assert config.training.continuous, "Fourier features are only used for continuous training."
modules.append(GaussianFourierProjection(embedding_size=nf, scale=config.model.fourier_scale))
modules.append(GaussianFourierProjection(embedding_size=nf, scale=fourier_scale))
embed_dim = 2 * nf
elif embedding_type == "positional":
@ -809,7 +859,7 @@ class NCSNpp(nn.Module):
# Downsampling block
channels = config.data.num_channels
channels = num_channels
if progressive_input != "none":
input_pyramid_ch = channels
@ -817,7 +867,7 @@ class NCSNpp(nn.Module):
hs_c = [nf]
in_ch = nf
for i_level in range(num_resolutions):
for i_level in range(self.num_resolutions):
# Residual blocks for this resolution
for i_block in range(num_res_blocks):
out_ch = nf * ch_mult[i_level]
@ -828,7 +878,7 @@ class NCSNpp(nn.Module):
modules.append(AttnBlock(channels=in_ch))
hs_c.append(in_ch)
if i_level != num_resolutions - 1:
if i_level != self.num_resolutions - 1:
if resblock_type == "ddpm":
modules.append(Downsample(in_ch=in_ch))
else:
@ -852,7 +902,7 @@ class NCSNpp(nn.Module):
pyramid_ch = 0
# Upsampling block
for i_level in reversed(range(num_resolutions)):
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(num_res_blocks + 1):
out_ch = nf * ch_mult[i_level]
modules.append(ResnetBlock(in_ch=in_ch + hs_c.pop(), out_ch=out_ch))
@ -862,7 +912,7 @@ class NCSNpp(nn.Module):
modules.append(AttnBlock(channels=in_ch))
if progressive != "none":
if i_level == num_resolutions - 1:
if i_level == self.num_resolutions - 1:
if progressive == "output_skip":
modules.append(nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6))
modules.append(conv3x3(in_ch, channels, init_scale=init_scale))
@ -899,7 +949,6 @@ class NCSNpp(nn.Module):
self.all_modules = nn.ModuleList(modules)
def forward(self, x, time_cond):
# import ipdb; ipdb.set_trace()
# timestep/noise_level embedding; only for continuous training
modules = self.all_modules
m_idx = 0
@ -926,7 +975,7 @@ class NCSNpp(nn.Module):
else:
temb = None
if not self.config.data.centered:
if not self.config.centered:
# If input data is in [0, 1]
x = 2 * x - 1.0
@ -1044,7 +1093,7 @@ class NCSNpp(nn.Module):
m_idx += 1
assert m_idx == len(modules)
if self.config.model.scale_by_sigma:
if self.config.scale_by_sigma:
used_sigmas = used_sigmas.reshape((x.shape[0], *([1] * len(x.shape[1:]))))
h = h / used_sigmas