Reproducible images by supplying latents to pipeline (#247)
* Accept latents as input for StableDiffusionPipeline. * Notebook to demonstrate reusable seeds (latents). * More accurate type annotation Co-authored-by: Suraj Patil <surajp815@gmail.com> * Review comments: move to device, raise instead of assert. * Actually commit the test notebook. I had mistakenly pushed an empty file instead. * Adapt notebook to Colab. * Update examples readme. * Move notebook to personal repo. Co-authored-by: Suraj Patil <surajp815@gmail.com>
This commit is contained in:
parent
89793a97e2
commit
bfe37f3159
|
@ -47,4 +47,8 @@ with autocast("cuda"):
|
|||
|
||||
images[0].save("fantasy_landscape.png")
|
||||
```
|
||||
You can also run this example on colab [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/Notebooks/blob/master/image_2_image_using_diffusers.ipynb)
|
||||
You can also run this example on colab [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/Notebooks/blob/master/image_2_image_using_diffusers.ipynb)
|
||||
|
||||
## Tweak prompts reusing seeds and latents
|
||||
|
||||
You can generate your own latents to reproduce results, or tweak your prompt on a specific result you liked. [This notebook](stable-diffusion-seeds.ipynb) shows how to do it step by step. You can also run it in Google Colab [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pcuenca/diffusers-examples/blob/main/notebooks/stable-diffusion-seeds.ipynb).
|
||||
|
|
|
@ -46,6 +46,7 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
|||
guidance_scale: Optional[float] = 7.5,
|
||||
eta: Optional[float] = 0.0,
|
||||
generator: Optional[torch.Generator] = None,
|
||||
latents: Optional[torch.FloatTensor] = None,
|
||||
output_type: Optional[str] = "pil",
|
||||
**kwargs,
|
||||
):
|
||||
|
@ -98,12 +99,18 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
|||
# to avoid doing two forward passes
|
||||
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
||||
|
||||
# get the intial random noise
|
||||
latents = torch.randn(
|
||||
(batch_size, self.unet.in_channels, height // 8, width // 8),
|
||||
generator=generator,
|
||||
device=self.device,
|
||||
)
|
||||
# get the initial random noise unless the user supplied it
|
||||
latents_shape = (batch_size, self.unet.in_channels, height // 8, width // 8)
|
||||
if latents is None:
|
||||
latents = torch.randn(
|
||||
latents_shape,
|
||||
generator=generator,
|
||||
device=self.device,
|
||||
)
|
||||
else:
|
||||
if latents.shape != latents_shape:
|
||||
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
||||
latents = latents.to(self.device)
|
||||
|
||||
# set timesteps
|
||||
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
|
||||
|
|
Loading…
Reference in New Issue