Reproducible images by supplying latents to pipeline (#247)
* Accept latents as input for StableDiffusionPipeline. * Notebook to demonstrate reusable seeds (latents). * More accurate type annotation Co-authored-by: Suraj Patil <surajp815@gmail.com> * Review comments: move to device, raise instead of assert. * Actually commit the test notebook. I had mistakenly pushed an empty file instead. * Adapt notebook to Colab. * Update examples readme. * Move notebook to personal repo. Co-authored-by: Suraj Patil <surajp815@gmail.com>
This commit is contained in:
parent
89793a97e2
commit
bfe37f3159
|
@ -47,4 +47,8 @@ with autocast("cuda"):
|
||||||
|
|
||||||
images[0].save("fantasy_landscape.png")
|
images[0].save("fantasy_landscape.png")
|
||||||
```
|
```
|
||||||
You can also run this example on colab [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/Notebooks/blob/master/image_2_image_using_diffusers.ipynb)
|
You can also run this example on colab [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/Notebooks/blob/master/image_2_image_using_diffusers.ipynb)
|
||||||
|
|
||||||
|
## Tweak prompts reusing seeds and latents
|
||||||
|
|
||||||
|
You can generate your own latents to reproduce results, or tweak your prompt on a specific result you liked. [This notebook](stable-diffusion-seeds.ipynb) shows how to do it step by step. You can also run it in Google Colab [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pcuenca/diffusers-examples/blob/main/notebooks/stable-diffusion-seeds.ipynb).
|
||||||
|
|
|
@ -46,6 +46,7 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
||||||
guidance_scale: Optional[float] = 7.5,
|
guidance_scale: Optional[float] = 7.5,
|
||||||
eta: Optional[float] = 0.0,
|
eta: Optional[float] = 0.0,
|
||||||
generator: Optional[torch.Generator] = None,
|
generator: Optional[torch.Generator] = None,
|
||||||
|
latents: Optional[torch.FloatTensor] = None,
|
||||||
output_type: Optional[str] = "pil",
|
output_type: Optional[str] = "pil",
|
||||||
**kwargs,
|
**kwargs,
|
||||||
):
|
):
|
||||||
|
@ -98,12 +99,18 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
||||||
# to avoid doing two forward passes
|
# to avoid doing two forward passes
|
||||||
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
||||||
|
|
||||||
# get the intial random noise
|
# get the initial random noise unless the user supplied it
|
||||||
latents = torch.randn(
|
latents_shape = (batch_size, self.unet.in_channels, height // 8, width // 8)
|
||||||
(batch_size, self.unet.in_channels, height // 8, width // 8),
|
if latents is None:
|
||||||
generator=generator,
|
latents = torch.randn(
|
||||||
device=self.device,
|
latents_shape,
|
||||||
)
|
generator=generator,
|
||||||
|
device=self.device,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
if latents.shape != latents_shape:
|
||||||
|
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
||||||
|
latents = latents.to(self.device)
|
||||||
|
|
||||||
# set timesteps
|
# set timesteps
|
||||||
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
|
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
|
||||||
|
|
Loading…
Reference in New Issue