[examples] add check_min_version (#1550)

* add check_min_version for examples

* move __version__ to the top

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* fix comment

* fix error_message

* adapt the install message

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
This commit is contained in:
Suraj Patil 2022-12-06 14:36:50 +01:00 committed by GitHub
parent ae4112d2bb
commit c228331068
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
21 changed files with 110 additions and 20 deletions

View File

@ -9,8 +9,18 @@ The `train_dreambooth.py` script shows how to implement the training procedure a
Before running the scripts, make sure to install the library's training dependencies:
**Important**
To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment:
```bash
pip install -U -r requirements.txt
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install -e .
```
Then cd in the example folder and run
```bash
pip install -r requirements.txt
```
And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with:

View File

@ -1,4 +1,3 @@
diffusers>==0.5.0
accelerate
torchvision
transformers>=4.21.0

View File

@ -1,4 +1,3 @@
diffusers>==0.5.1
transformers>=4.21.0
flax
optax

View File

@ -16,6 +16,7 @@ from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from huggingface_hub import HfFolder, Repository, whoami
from PIL import Image
from torchvision import transforms
@ -23,6 +24,9 @@ from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.10.0.dev0")
logger = get_logger(__name__)

View File

@ -23,6 +23,7 @@ from diffusers import (
FlaxUNet2DConditionModel,
)
from diffusers.pipelines.stable_diffusion import FlaxStableDiffusionSafetyChecker
from diffusers.utils import check_min_version
from flax import jax_utils
from flax.training import train_state
from flax.training.common_utils import shard
@ -33,6 +34,9 @@ from tqdm.auto import tqdm
from transformers import CLIPFeatureExtractor, CLIPTokenizer, FlaxCLIPTextModel, set_seed
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.10.0.dev0")
logger = logging.getLogger(__name__)

View File

@ -24,6 +24,7 @@ from diffusers import (
UNet2DConditionModel,
)
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from huggingface_hub import HfFolder, Repository, whoami
from PIL import Image, ImageDraw
from torchvision import transforms
@ -31,6 +32,9 @@ from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.10.0.dev0")
logger = get_logger(__name__)

View File

@ -12,9 +12,18 @@ ___This script is experimental. The script fine-tunes the whole model and often
Before running the scripts, make sure to install the library's training dependencies:
**Important**
To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment:
```bash
pip install "git+https://github.com/huggingface/diffusers.git#egg=diffusers[training]"
pip install -U -r requirements.txt
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install .
```
Then cd in the example folder and run
```bash
pip install -r requirements.txt
```
And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with:

View File

@ -1,7 +1,7 @@
diffusers==0.4.1
accelerate
torchvision
transformers>=4.21.0
datasets
ftfy
tensorboard
modelcards

View File

@ -1,5 +1,5 @@
diffusers>==0.5.1
transformers>=4.21.0
datasets
flax
optax
torch

View File

@ -17,12 +17,16 @@ from accelerate.utils import set_seed
from datasets import load_dataset
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from huggingface_hub import HfFolder, Repository, whoami
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.10.0.dev0")
logger = get_logger(__name__)

View File

@ -23,6 +23,7 @@ from diffusers import (
FlaxUNet2DConditionModel,
)
from diffusers.pipelines.stable_diffusion import FlaxStableDiffusionSafetyChecker
from diffusers.utils import check_min_version
from flax import jax_utils
from flax.training import train_state
from flax.training.common_utils import shard
@ -32,6 +33,9 @@ from tqdm.auto import tqdm
from transformers import CLIPFeatureExtractor, CLIPTokenizer, FlaxCLIPTextModel, set_seed
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.10.0.dev0")
logger = logging.getLogger(__name__)

View File

@ -16,8 +16,18 @@ Colab for inference
Before running the scripts, make sure to install the library's training dependencies:
**Important**
To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment:
```bash
pip install diffusers"[training]" accelerate "transformers>=4.21.0"
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install .
```
Then cd in the example folder and run
```bash
pip install -r requirements.txt
```
And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with:

View File

@ -1,3 +1,6 @@
accelerate
torchvision
transformers>=4.21.0
ftfy
tensorboard
modelcards

View File

@ -1,4 +1,3 @@
diffusers>==0.5.1
transformers>=4.21.0
flax
optax

View File

@ -19,6 +19,7 @@ from accelerate.utils import set_seed
from diffusers import AutoencoderKL, DDPMScheduler, PNDMScheduler, StableDiffusionPipeline, UNet2DConditionModel
from diffusers.optimization import get_scheduler
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from diffusers.utils import check_min_version
from huggingface_hub import HfFolder, Repository, whoami
# TODO: remove and import from diffusers.utils when the new version of diffusers is released
@ -48,6 +49,10 @@ else:
# ------------------------------------------------------------------------------
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.10.0.dev0")
logger = get_logger(__name__)

View File

@ -24,6 +24,7 @@ from diffusers import (
FlaxUNet2DConditionModel,
)
from diffusers.pipelines.stable_diffusion import FlaxStableDiffusionSafetyChecker
from diffusers.utils import check_min_version
from flax import jax_utils
from flax.training import train_state
from flax.training.common_utils import shard
@ -55,6 +56,9 @@ else:
}
# ------------------------------------------------------------------------------
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.10.0.dev0")
logger = logging.getLogger(__name__)

View File

@ -6,10 +6,21 @@ Creating a training image set is [described in a different document](https://hug
Before running the scripts, make sure to install the library's training dependencies:
**Important**
To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment:
```bash
pip install diffusers[training] accelerate datasets tensorboard
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install .
```
Then cd in the example folder and run
```bash
pip install -r requirements.txt
```
And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with:
```bash

View File

@ -11,11 +11,11 @@ import torch.nn.functional as F
from accelerate import Accelerator
from accelerate.logging import get_logger
from datasets import load_dataset
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel, __version__
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel
from diffusers.utils import check_min_version
from huggingface_hub import HfFolder, Repository, whoami
from packaging import version
from torchvision.transforms import (
CenterCrop,
Compose,
@ -28,8 +28,11 @@ from torchvision.transforms import (
from tqdm.auto import tqdm
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.10.0.dev0")
logger = get_logger(__name__)
diffusers_version = version.parse(version.parse(__version__).base_version)
def _extract_into_tensor(arr, timesteps, broadcast_shape):

View File

@ -13,6 +13,7 @@ from datasets import load_dataset
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel
from diffusers.utils import check_min_version
from huggingface_hub import HfFolder, Repository, whoami
from onnxruntime.training.ortmodule import ORTModule
from torchvision.transforms import (
@ -27,6 +28,9 @@ from torchvision.transforms import (
from tqdm.auto import tqdm
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.10.0.dev0")
logger = get_logger(__name__)

View File

@ -1,3 +1,7 @@
__version__ = "0.10.0.dev0"
from .configuration_utils import ConfigMixin
from .onnx_utils import OnnxRuntimeModel
from .utils import (
is_flax_available,
is_inflect_available,
@ -6,16 +10,10 @@ from .utils import (
is_torch_available,
is_transformers_available,
is_unidecode_available,
logging,
)
__version__ = "0.10.0.dev0"
from .configuration_utils import ConfigMixin
from .onnx_utils import OnnxRuntimeModel
from .utils import logging
if is_torch_available():
from .modeling_utils import ModelMixin
from .models import AutoencoderKL, Transformer2DModel, UNet1DModel, UNet2DConditionModel, UNet2DModel, VQModel

View File

@ -15,6 +15,9 @@
import os
from packaging import version
from .. import __version__
from .deprecation_utils import deprecate
from .import_utils import (
ENV_VARS_TRUE_AND_AUTO_VALUES,
@ -88,3 +91,16 @@ _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS = [
"EulerAncestralDiscreteScheduler",
"DPMSolverMultistepScheduler",
]
def check_min_version(min_version):
if version.parse(__version__) < version.parse(min_version):
if "dev" in min_version:
error_message = (
"This example requires a source install from HuggingFace diffusers (see "
"`https://huggingface.co/docs/diffusers/installation#install-from-source`),"
)
else:
error_message = f"This example requires a minimum version of {min_version},"
error_message += f" but the version found is {__version__}.\n"
raise ImportError(error_message)