From c50d997591d14dfa2030b015d2a5934add658b1d Mon Sep 17 00:00:00 2001 From: patil-suraj Date: Thu, 30 Jun 2022 12:29:45 +0200 Subject: [PATCH] remove unused args --- .../models/unet_sde_score_estimation.py | 16 ++-------------- 1 file changed, 2 insertions(+), 14 deletions(-) diff --git a/src/diffusers/models/unet_sde_score_estimation.py b/src/diffusers/models/unet_sde_score_estimation.py index 6eed6791..92b8ba9d 100644 --- a/src/diffusers/models/unet_sde_score_estimation.py +++ b/src/diffusers/models/unet_sde_score_estimation.py @@ -396,10 +396,8 @@ class NCSNpp(ModelMixin, ConfigMixin): def __init__( self, - centered=False, image_size=1024, num_channels=3, - attention_type="ddpm", attn_resolutions=(16,), ch_mult=(1, 2, 4, 8, 16, 32, 32, 32), conditional=True, @@ -411,24 +409,19 @@ class NCSNpp(ModelMixin, ConfigMixin): fourier_scale=16, init_scale=0.0, nf=16, - nonlinearity="swish", - normalization="GroupNorm", num_res_blocks=1, progressive="output_skip", progressive_combine="sum", progressive_input="input_skip", resamp_with_conv=True, - resblock_type="biggan", scale_by_sigma=True, skip_rescale=True, continuous=True, ): super().__init__() self.register_to_config( - centered=centered, image_size=image_size, num_channels=num_channels, - attention_type=attention_type, attn_resolutions=attn_resolutions, ch_mult=ch_mult, conditional=conditional, @@ -440,14 +433,11 @@ class NCSNpp(ModelMixin, ConfigMixin): fourier_scale=fourier_scale, init_scale=init_scale, nf=nf, - nonlinearity=nonlinearity, - normalization=normalization, num_res_blocks=num_res_blocks, progressive=progressive, progressive_combine=progressive_combine, progressive_input=progressive_input, resamp_with_conv=resamp_with_conv, - resblock_type=resblock_type, scale_by_sigma=scale_by_sigma, skip_rescale=skip_rescale, continuous=continuous, @@ -462,7 +452,6 @@ class NCSNpp(ModelMixin, ConfigMixin): self.conditional = conditional self.skip_rescale = skip_rescale - self.resblock_type = resblock_type self.progressive = progressive self.progressive_input = progressive_input self.embedding_type = embedding_type @@ -633,9 +622,8 @@ class NCSNpp(ModelMixin, ConfigMixin): else: temb = None - if not self.config.centered: - # If input data is in [0, 1] - x = 2 * x - 1.0 + # If input data is in [0, 1] + x = 2 * x - 1.0 # Downsampling block input_pyramid = None