Improve ddim scheduler and fix bug when prediction type is "sample" (#2094)

Improve ddim scheduler

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
This commit is contained in:
Peter Lin 2023-03-09 11:32:30 -08:00 committed by GitHub
parent c5f6c538fd
commit c812d97d5b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 11 additions and 10 deletions

View File

@ -301,12 +301,13 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin):
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
if self.config.prediction_type == "epsilon": if self.config.prediction_type == "epsilon":
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
pred_epsilon = model_output
elif self.config.prediction_type == "sample": elif self.config.prediction_type == "sample":
pred_original_sample = model_output pred_original_sample = model_output
pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
elif self.config.prediction_type == "v_prediction": elif self.config.prediction_type == "v_prediction":
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
# predict V pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
model_output = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
else: else:
raise ValueError( raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
@ -328,17 +329,16 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin):
std_dev_t = eta * variance ** (0.5) std_dev_t = eta * variance ** (0.5)
if use_clipped_model_output: if use_clipped_model_output:
# the model_output is always re-derived from the clipped x_0 in Glide # the pred_epsilon is always re-derived from the clipped x_0 in Glide
model_output = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5) pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * pred_epsilon
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
if eta > 0: if eta > 0:
device = model_output.device
if variance_noise is not None and generator is not None: if variance_noise is not None and generator is not None:
raise ValueError( raise ValueError(
"Cannot pass both generator and variance_noise. Please make sure that either `generator` or" "Cannot pass both generator and variance_noise. Please make sure that either `generator` or"
@ -347,7 +347,7 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin):
if variance_noise is None: if variance_noise is None:
variance_noise = randn_tensor( variance_noise = randn_tensor(
model_output.shape, generator=generator, device=device, dtype=model_output.dtype model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
) )
variance = std_dev_t * variance_noise variance = std_dev_t * variance_noise

View File

@ -254,12 +254,13 @@ class FlaxDDIMScheduler(FlaxSchedulerMixin, ConfigMixin):
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
if self.config.prediction_type == "epsilon": if self.config.prediction_type == "epsilon":
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
pred_epsilon = model_output
elif self.config.prediction_type == "sample": elif self.config.prediction_type == "sample":
pred_original_sample = model_output pred_original_sample = model_output
pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
elif self.config.prediction_type == "v_prediction": elif self.config.prediction_type == "v_prediction":
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
# predict V pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
model_output = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
else: else:
raise ValueError( raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
@ -272,7 +273,7 @@ class FlaxDDIMScheduler(FlaxSchedulerMixin, ConfigMixin):
std_dev_t = eta * variance ** (0.5) std_dev_t = eta * variance ** (0.5)
# 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * pred_epsilon
# 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction