Bump the version to 0.7.0.dev0 (#912)
* Bump the version to 0.7.0.dev0 * deprecate offsets * deprecate LMS timesteps * LMS 0.7.0->0.8.0
This commit is contained in:
parent
ba74a8be7a
commit
cc36f2e7ff
2
setup.py
2
setup.py
|
@ -211,7 +211,7 @@ install_requires = [
|
|||
|
||||
setup(
|
||||
name="diffusers",
|
||||
version="0.6.0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
|
||||
version="0.7.0.dev0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
|
||||
description="Diffusers",
|
||||
long_description=open("README.md", "r", encoding="utf-8").read(),
|
||||
long_description_content_type="text/markdown",
|
||||
|
|
|
@ -9,7 +9,7 @@ from .utils import (
|
|||
)
|
||||
|
||||
|
||||
__version__ = "0.6.0"
|
||||
__version__ = "0.7.0.dev0"
|
||||
|
||||
from .configuration_utils import ConfigMixin
|
||||
from .onnx_utils import OnnxRuntimeModel
|
||||
|
|
|
@ -23,7 +23,7 @@ import numpy as np
|
|||
import torch
|
||||
|
||||
from ..configuration_utils import ConfigMixin, register_to_config
|
||||
from ..utils import BaseOutput, deprecate
|
||||
from ..utils import BaseOutput
|
||||
from .scheduling_utils import SchedulerMixin
|
||||
|
||||
|
||||
|
@ -175,7 +175,7 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin):
|
|||
|
||||
return variance
|
||||
|
||||
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None, **kwargs):
|
||||
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
|
||||
"""
|
||||
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
|
||||
|
||||
|
@ -183,18 +183,13 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin):
|
|||
num_inference_steps (`int`):
|
||||
the number of diffusion steps used when generating samples with a pre-trained model.
|
||||
"""
|
||||
deprecated_offset = deprecate(
|
||||
"offset", "0.7.0", "Please pass `steps_offset` to `__init__` instead.", take_from=kwargs
|
||||
)
|
||||
offset = deprecated_offset or self.config.steps_offset
|
||||
|
||||
self.num_inference_steps = num_inference_steps
|
||||
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
|
||||
# creates integer timesteps by multiplying by ratio
|
||||
# casting to int to avoid issues when num_inference_step is power of 3
|
||||
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
|
||||
self.timesteps = torch.from_numpy(timesteps).to(device)
|
||||
self.timesteps += offset
|
||||
self.timesteps += self.config.steps_offset
|
||||
|
||||
def step(
|
||||
self,
|
||||
|
|
|
@ -209,7 +209,7 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|||
):
|
||||
deprecate(
|
||||
"timestep as an index",
|
||||
"0.7.0",
|
||||
"0.8.0",
|
||||
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
||||
" `LMSDiscreteScheduler.step()` will not be supported in future versions. Make sure to pass"
|
||||
" one of the `scheduler.timesteps` as a timestep.",
|
||||
|
@ -259,7 +259,7 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|||
if isinstance(timesteps, torch.IntTensor) or isinstance(timesteps, torch.LongTensor):
|
||||
deprecate(
|
||||
"timesteps as indices",
|
||||
"0.7.0",
|
||||
"0.8.0",
|
||||
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
||||
" `LMSDiscreteScheduler.add_noise()` will not be supported in future versions. Make sure to"
|
||||
" pass values from `scheduler.timesteps` as timesteps.",
|
||||
|
|
|
@ -21,7 +21,6 @@ import numpy as np
|
|||
import torch
|
||||
|
||||
from ..configuration_utils import ConfigMixin, register_to_config
|
||||
from ..utils import deprecate
|
||||
from .scheduling_utils import SchedulerMixin, SchedulerOutput
|
||||
|
||||
|
||||
|
@ -142,7 +141,7 @@ class PNDMScheduler(SchedulerMixin, ConfigMixin):
|
|||
self.plms_timesteps = None
|
||||
self.timesteps = None
|
||||
|
||||
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None, **kwargs):
|
||||
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
|
||||
"""
|
||||
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
|
||||
|
||||
|
@ -150,17 +149,13 @@ class PNDMScheduler(SchedulerMixin, ConfigMixin):
|
|||
num_inference_steps (`int`):
|
||||
the number of diffusion steps used when generating samples with a pre-trained model.
|
||||
"""
|
||||
deprecated_offset = deprecate(
|
||||
"offset", "0.7.0", "Please pass `steps_offset` to `__init__` instead.", take_from=kwargs
|
||||
)
|
||||
offset = deprecated_offset or self.config.steps_offset
|
||||
|
||||
self.num_inference_steps = num_inference_steps
|
||||
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
|
||||
# creates integer timesteps by multiplying by ratio
|
||||
# casting to int to avoid issues when num_inference_step is power of 3
|
||||
self._timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()
|
||||
self._timesteps += offset
|
||||
self._timesteps += self.config.steps_offset
|
||||
|
||||
if self.config.skip_prk_steps:
|
||||
# for some models like stable diffusion the prk steps can/should be skipped to
|
||||
|
|
Loading…
Reference in New Issue