make from hub import work
This commit is contained in:
parent
1a6196e8a2
commit
ce5666211e
|
@ -23,7 +23,7 @@ class DDPM(DiffusionPipeline):
|
|||
|
||||
modeling_file = "modeling_ddpm.py"
|
||||
|
||||
def __init__(self, unet, noise_scheduler, vqvae):
|
||||
def __init__(self, unet, noise_scheduler):
|
||||
super().__init__()
|
||||
self.register_modules(unet=unet, noise_scheduler=noise_scheduler)
|
||||
|
||||
|
|
|
@ -0,0 +1,339 @@
|
|||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Utilities to dynamically load objects from the Hub."""
|
||||
|
||||
import importlib
|
||||
import os
|
||||
import re
|
||||
import shutil
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Dict, Optional, Union
|
||||
|
||||
from huggingface_hub import HfFolder, model_info
|
||||
|
||||
from transformers.utils import (
|
||||
HF_MODULES_CACHE,
|
||||
TRANSFORMERS_DYNAMIC_MODULE_NAME,
|
||||
cached_path,
|
||||
hf_bucket_url,
|
||||
is_offline_mode,
|
||||
logging,
|
||||
)
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
def init_hf_modules():
|
||||
"""
|
||||
Creates the cache directory for modules with an init, and adds it to the Python path.
|
||||
"""
|
||||
# This function has already been executed if HF_MODULES_CACHE already is in the Python path.
|
||||
if HF_MODULES_CACHE in sys.path:
|
||||
return
|
||||
|
||||
sys.path.append(HF_MODULES_CACHE)
|
||||
os.makedirs(HF_MODULES_CACHE, exist_ok=True)
|
||||
init_path = Path(HF_MODULES_CACHE) / "__init__.py"
|
||||
if not init_path.exists():
|
||||
init_path.touch()
|
||||
|
||||
|
||||
def create_dynamic_module(name: Union[str, os.PathLike]):
|
||||
"""
|
||||
Creates a dynamic module in the cache directory for modules.
|
||||
"""
|
||||
init_hf_modules()
|
||||
dynamic_module_path = Path(HF_MODULES_CACHE) / name
|
||||
# If the parent module does not exist yet, recursively create it.
|
||||
if not dynamic_module_path.parent.exists():
|
||||
create_dynamic_module(dynamic_module_path.parent)
|
||||
os.makedirs(dynamic_module_path, exist_ok=True)
|
||||
init_path = dynamic_module_path / "__init__.py"
|
||||
if not init_path.exists():
|
||||
init_path.touch()
|
||||
|
||||
|
||||
def get_relative_imports(module_file):
|
||||
"""
|
||||
Get the list of modules that are relatively imported in a module file.
|
||||
|
||||
Args:
|
||||
module_file (`str` or `os.PathLike`): The module file to inspect.
|
||||
"""
|
||||
with open(module_file, "r", encoding="utf-8") as f:
|
||||
content = f.read()
|
||||
|
||||
# Imports of the form `import .xxx`
|
||||
relative_imports = re.findall("^\s*import\s+\.(\S+)\s*$", content, flags=re.MULTILINE)
|
||||
# Imports of the form `from .xxx import yyy`
|
||||
relative_imports += re.findall("^\s*from\s+\.(\S+)\s+import", content, flags=re.MULTILINE)
|
||||
# Unique-ify
|
||||
return list(set(relative_imports))
|
||||
|
||||
|
||||
def get_relative_import_files(module_file):
|
||||
"""
|
||||
Get the list of all files that are needed for a given module. Note that this function recurses through the relative
|
||||
imports (if a imports b and b imports c, it will return module files for b and c).
|
||||
|
||||
Args:
|
||||
module_file (`str` or `os.PathLike`): The module file to inspect.
|
||||
"""
|
||||
no_change = False
|
||||
files_to_check = [module_file]
|
||||
all_relative_imports = []
|
||||
|
||||
# Let's recurse through all relative imports
|
||||
while not no_change:
|
||||
new_imports = []
|
||||
for f in files_to_check:
|
||||
new_imports.extend(get_relative_imports(f))
|
||||
|
||||
module_path = Path(module_file).parent
|
||||
new_import_files = [str(module_path / m) for m in new_imports]
|
||||
new_import_files = [f for f in new_import_files if f not in all_relative_imports]
|
||||
files_to_check = [f"{f}.py" for f in new_import_files]
|
||||
|
||||
no_change = len(new_import_files) == 0
|
||||
all_relative_imports.extend(files_to_check)
|
||||
|
||||
return all_relative_imports
|
||||
|
||||
|
||||
def check_imports(filename):
|
||||
"""
|
||||
Check if the current Python environment contains all the libraries that are imported in a file.
|
||||
"""
|
||||
with open(filename, "r", encoding="utf-8") as f:
|
||||
content = f.read()
|
||||
|
||||
# Imports of the form `import xxx`
|
||||
imports = re.findall("^\s*import\s+(\S+)\s*$", content, flags=re.MULTILINE)
|
||||
# Imports of the form `from xxx import yyy`
|
||||
imports += re.findall("^\s*from\s+(\S+)\s+import", content, flags=re.MULTILINE)
|
||||
# Only keep the top-level module
|
||||
imports = [imp.split(".")[0] for imp in imports if not imp.startswith(".")]
|
||||
|
||||
# Unique-ify and test we got them all
|
||||
imports = list(set(imports))
|
||||
missing_packages = []
|
||||
for imp in imports:
|
||||
try:
|
||||
importlib.import_module(imp)
|
||||
except ImportError:
|
||||
missing_packages.append(imp)
|
||||
|
||||
if len(missing_packages) > 0:
|
||||
raise ImportError(
|
||||
"This modeling file requires the following packages that were not found in your environment: "
|
||||
f"{', '.join(missing_packages)}. Run `pip install {' '.join(missing_packages)}`"
|
||||
)
|
||||
|
||||
return get_relative_imports(filename)
|
||||
|
||||
|
||||
def get_class_in_module(class_name, module_path):
|
||||
"""
|
||||
Import a module on the cache directory for modules and extract a class from it.
|
||||
"""
|
||||
module_path = module_path.replace(os.path.sep, ".")
|
||||
module = importlib.import_module(module_path)
|
||||
return getattr(module, class_name)
|
||||
|
||||
|
||||
def get_cached_module_file(
|
||||
pretrained_model_name_or_path: Union[str, os.PathLike],
|
||||
module_file: str,
|
||||
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
||||
force_download: bool = False,
|
||||
resume_download: bool = False,
|
||||
proxies: Optional[Dict[str, str]] = None,
|
||||
use_auth_token: Optional[Union[bool, str]] = None,
|
||||
revision: Optional[str] = None,
|
||||
local_files_only: bool = False,
|
||||
):
|
||||
"""
|
||||
Prepares Downloads a module from a local folder or a distant repo and returns its path inside the cached
|
||||
Transformers module.
|
||||
|
||||
Args:
|
||||
pretrained_model_name_or_path (`str` or `os.PathLike`):
|
||||
This can be either:
|
||||
|
||||
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on
|
||||
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced
|
||||
under a user or organization name, like `dbmdz/bert-base-german-cased`.
|
||||
- a path to a *directory* containing a configuration file saved using the
|
||||
[`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
|
||||
|
||||
module_file (`str`):
|
||||
The name of the module file containing the class to look for.
|
||||
cache_dir (`str` or `os.PathLike`, *optional*):
|
||||
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
|
||||
cache should not be used.
|
||||
force_download (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to force to (re-)download the configuration files and override the cached versions if they
|
||||
exist.
|
||||
resume_download (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.
|
||||
proxies (`Dict[str, str]`, *optional*):
|
||||
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
||||
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
|
||||
use_auth_token (`str` or *bool*, *optional*):
|
||||
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
|
||||
when running `transformers-cli login` (stored in `~/.huggingface`).
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
||||
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
||||
identifier allowed by git.
|
||||
local_files_only (`bool`, *optional*, defaults to `False`):
|
||||
If `True`, will only try to load the tokenizer configuration from local files.
|
||||
|
||||
<Tip>
|
||||
|
||||
Passing `use_auth_token=True` is required when you want to use a private model.
|
||||
|
||||
</Tip>
|
||||
|
||||
Returns:
|
||||
`str`: The path to the module inside the cache.
|
||||
"""
|
||||
# Download and cache module_file from the repo `pretrained_model_name_or_path` of grab it if it's a local file.
|
||||
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
||||
module_file_or_url = os.path.join(pretrained_model_name_or_path, module_file)
|
||||
submodule = "local"
|
||||
|
||||
try:
|
||||
# Load from URL or cache if already cached
|
||||
resolved_module_file = cached_path(
|
||||
module_file_or_url,
|
||||
cache_dir=cache_dir,
|
||||
force_download=force_download,
|
||||
proxies=proxies,
|
||||
resume_download=resume_download,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
)
|
||||
|
||||
except EnvironmentError:
|
||||
logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}.")
|
||||
raise
|
||||
|
||||
# Check we have all the requirements in our environment
|
||||
modules_needed = check_imports(resolved_module_file)
|
||||
|
||||
# Now we move the module inside our cached dynamic modules.
|
||||
full_submodule = TRANSFORMERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule
|
||||
create_dynamic_module(full_submodule)
|
||||
submodule_path = Path(HF_MODULES_CACHE) / full_submodule
|
||||
# We always copy local files (we could hash the file to see if there was a change, and give them the name of
|
||||
# that hash, to only copy when there is a modification but it seems overkill for now).
|
||||
# The only reason we do the copy is to avoid putting too many folders in sys.path.
|
||||
shutil.copy(resolved_module_file, submodule_path / module_file)
|
||||
for module_needed in modules_needed:
|
||||
module_needed = f"{module_needed}.py"
|
||||
shutil.copy(os.path.join(pretrained_model_name_or_path, module_needed), submodule_path / module_needed)
|
||||
return os.path.join(full_submodule, module_file)
|
||||
|
||||
|
||||
def get_class_from_dynamic_module(
|
||||
pretrained_model_name_or_path: Union[str, os.PathLike],
|
||||
module_file: str,
|
||||
class_name: str,
|
||||
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
||||
force_download: bool = False,
|
||||
resume_download: bool = False,
|
||||
proxies: Optional[Dict[str, str]] = None,
|
||||
use_auth_token: Optional[Union[bool, str]] = None,
|
||||
revision: Optional[str] = None,
|
||||
local_files_only: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Extracts a class from a module file, present in the local folder or repository of a model.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
Calling this function will execute the code in the module file found locally or downloaded from the Hub. It should
|
||||
therefore only be called on trusted repos.
|
||||
|
||||
</Tip>
|
||||
|
||||
Args:
|
||||
pretrained_model_name_or_path (`str` or `os.PathLike`):
|
||||
This can be either:
|
||||
|
||||
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on
|
||||
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced
|
||||
under a user or organization name, like `dbmdz/bert-base-german-cased`.
|
||||
- a path to a *directory* containing a configuration file saved using the
|
||||
[`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
|
||||
|
||||
module_file (`str`):
|
||||
The name of the module file containing the class to look for.
|
||||
class_name (`str`):
|
||||
The name of the class to import in the module.
|
||||
cache_dir (`str` or `os.PathLike`, *optional*):
|
||||
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
|
||||
cache should not be used.
|
||||
force_download (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to force to (re-)download the configuration files and override the cached versions if they
|
||||
exist.
|
||||
resume_download (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.
|
||||
proxies (`Dict[str, str]`, *optional*):
|
||||
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
||||
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
|
||||
use_auth_token (`str` or `bool`, *optional*):
|
||||
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
|
||||
when running `transformers-cli login` (stored in `~/.huggingface`).
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
||||
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
||||
identifier allowed by git.
|
||||
local_files_only (`bool`, *optional*, defaults to `False`):
|
||||
If `True`, will only try to load the tokenizer configuration from local files.
|
||||
|
||||
<Tip>
|
||||
|
||||
Passing `use_auth_token=True` is required when you want to use a private model.
|
||||
|
||||
</Tip>
|
||||
|
||||
Returns:
|
||||
`type`: The class, dynamically imported from the module.
|
||||
|
||||
Examples:
|
||||
|
||||
```python
|
||||
# Download module `modeling.py` from huggingface.co and cache then extract the class `MyBertModel` from this
|
||||
# module.
|
||||
cls = get_class_from_dynamic_module("sgugger/my-bert-model", "modeling.py", "MyBertModel")
|
||||
```"""
|
||||
# And lastly we get the class inside our newly created module
|
||||
final_module = get_cached_module_file(
|
||||
pretrained_model_name_or_path,
|
||||
module_file,
|
||||
cache_dir=cache_dir,
|
||||
force_download=force_download,
|
||||
resume_download=resume_download,
|
||||
proxies=proxies,
|
||||
use_auth_token=use_auth_token,
|
||||
revision=revision,
|
||||
local_files_only=local_files_only,
|
||||
)
|
||||
return get_class_in_module(class_name, final_module.replace(".py", ""))
|
|
@ -16,6 +16,7 @@
|
|||
|
||||
import importlib
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Optional, Union
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
|
@ -23,6 +24,7 @@ from huggingface_hub import snapshot_download
|
|||
from transformers.utils import logging
|
||||
|
||||
from .configuration_utils import ConfigMixin
|
||||
from .dynamic_modules_utils import get_class_from_dynamic_module
|
||||
|
||||
|
||||
INDEX_FILE = "diffusion_model.pt"
|
||||
|
@ -91,12 +93,10 @@ class DiffusionPipeline(ConfigMixin):
|
|||
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
|
||||
# use snapshot download here to get it working from from_pretrained
|
||||
cached_folder = snapshot_download(pretrained_model_name_or_path)
|
||||
config_dict, pipeline_kwargs = cls.get_config_dict(cached_folder)
|
||||
_, config_dict = cls.get_config_dict(cached_folder)
|
||||
|
||||
module = pipeline_kwargs["_module"]
|
||||
# TODO(Suraj) - make from hub import work
|
||||
# Make `ddpm = DiffusionPipeline.from_pretrained("fusing/ddpm-lsun-bedroom-pipe")` work
|
||||
# Add Sylvains code from transformers
|
||||
module = config_dict.pop("_module", None)
|
||||
class_name_ = config_dict.pop("_class_name")
|
||||
|
||||
init_kwargs = {}
|
||||
|
||||
|
@ -122,5 +122,6 @@ class DiffusionPipeline(ConfigMixin):
|
|||
|
||||
init_kwargs[name] = loaded_sub_model # UNet(...), # DiffusionSchedule(...)
|
||||
|
||||
model = cls(**init_kwargs)
|
||||
class_obj = get_class_from_dynamic_module(cached_folder, module, class_name_, cached_folder)
|
||||
model = class_obj(**init_kwargs)
|
||||
return model
|
||||
|
|
Loading…
Reference in New Issue