Finalize ldm (#96)

* upload

* make checkpoint work

* finalize
This commit is contained in:
Patrick von Platen 2022-07-19 02:02:23 +02:00 committed by GitHub
parent 6cabc599a2
commit d5acb4110a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 999 additions and 135 deletions

View File

@ -7,7 +7,15 @@ from .utils import is_inflect_available, is_transformers_available, is_unidecode
__version__ = "0.0.4" __version__ = "0.0.4"
from .modeling_utils import ModelMixin from .modeling_utils import ModelMixin
from .models import AutoencoderKL, NCSNpp, UNetLDMModel, UNetModel, UNetUnconditionalModel, VQModel from .models import (
AutoencoderKL,
NCSNpp,
UNetConditionalModel,
UNetLDMModel,
UNetModel,
UNetUnconditionalModel,
VQModel,
)
from .pipeline_utils import DiffusionPipeline from .pipeline_utils import DiffusionPipeline
from .pipelines import ( from .pipelines import (
DDIMPipeline, DDIMPipeline,

View File

@ -17,6 +17,7 @@
# limitations under the License. # limitations under the License.
from .unet import UNetModel from .unet import UNetModel
from .unet_conditional import UNetConditionalModel
from .unet_glide import GlideSuperResUNetModel, GlideTextToImageUNetModel, GlideUNetModel from .unet_glide import GlideSuperResUNetModel, GlideTextToImageUNetModel, GlideUNetModel
from .unet_ldm import UNetLDMModel from .unet_ldm import UNetLDMModel
from .unet_sde_score_estimation import NCSNpp from .unet_sde_score_estimation import NCSNpp

View File

@ -42,7 +42,7 @@ class AttentionBlockNew(nn.Module):
self.value = nn.Linear(channels, channels) self.value = nn.Linear(channels, channels)
self.rescale_output_factor = rescale_output_factor self.rescale_output_factor = rescale_output_factor
self.proj_attn = zero_module(nn.Linear(channels, channels, 1)) self.proj_attn = nn.Linear(channels, channels, 1)
def transpose_for_scores(self, projection: torch.Tensor) -> torch.Tensor: def transpose_for_scores(self, projection: torch.Tensor) -> torch.Tensor:
new_projection_shape = projection.size()[:-1] + (self.num_heads, -1) new_projection_shape = projection.size()[:-1] + (self.num_heads, -1)
@ -147,6 +147,8 @@ class SpatialTransformer(nn.Module):
def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0.0, context_dim=None): def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0.0, context_dim=None):
super().__init__() super().__init__()
self.n_heads = n_heads
self.d_head = d_head
self.in_channels = in_channels self.in_channels = in_channels
inner_dim = n_heads * d_head inner_dim = n_heads * d_head
self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
@ -160,7 +162,7 @@ class SpatialTransformer(nn.Module):
] ]
) )
self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)) self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
def forward(self, x, context=None): def forward(self, x, context=None):
# note: if no context is given, cross-attention defaults to self-attention # note: if no context is given, cross-attention defaults to self-attention
@ -175,6 +177,12 @@ class SpatialTransformer(nn.Module):
x = self.proj_out(x) x = self.proj_out(x)
return x + x_in return x + x_in
def set_weight(self, layer):
self.norm = layer.norm
self.proj_in = layer.proj_in
self.transformer_blocks = layer.transformer_blocks
self.proj_out = layer.proj_out
class BasicTransformerBlock(nn.Module): class BasicTransformerBlock(nn.Module):
def __init__(self, dim, n_heads, d_head, dropout=0.0, context_dim=None, gated_ff=True, checkpoint=True): def __init__(self, dim, n_heads, d_head, dropout=0.0, context_dim=None, gated_ff=True, checkpoint=True):
@ -270,14 +278,15 @@ class FeedForward(nn.Module):
return self.net(x) return self.net(x)
# TODO(Patrick) - this can and should be removed # feedforward
def zero_module(module): class GEGLU(nn.Module):
""" def __init__(self, dim_in, dim_out):
Zero out the parameters of a module and return it. super().__init__()
""" self.proj = nn.Linear(dim_in, dim_out * 2)
for p in module.parameters():
p.detach().zero_() def forward(self, x):
return module x, gate = self.proj(x).chunk(2, dim=-1)
return x * F.gelu(gate)
# TODO(Patrick) - remove once all weights have been converted -> not needed anymore then # TODO(Patrick) - remove once all weights have been converted -> not needed anymore then
@ -298,17 +307,6 @@ def default(val, d):
return d() if isfunction(d) else d return d() if isfunction(d) else d
# feedforward
class GEGLU(nn.Module):
def __init__(self, dim_in, dim_out):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out * 2)
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim=-1)
return x * F.gelu(gate)
# the main attention block that is used for all models # the main attention block that is used for all models
class AttentionBlock(nn.Module): class AttentionBlock(nn.Module):
""" """
@ -348,7 +346,7 @@ class AttentionBlock(nn.Module):
if encoder_channels is not None: if encoder_channels is not None:
self.encoder_kv = nn.Conv1d(encoder_channels, channels * 2, 1) self.encoder_kv = nn.Conv1d(encoder_channels, channels * 2, 1)
self.proj = zero_module(nn.Conv1d(channels, channels, 1)) self.proj = nn.Conv1d(channels, channels, 1)
self.overwrite_qkv = overwrite_qkv self.overwrite_qkv = overwrite_qkv
self.overwrite_linear = overwrite_linear self.overwrite_linear = overwrite_linear
@ -370,7 +368,7 @@ class AttentionBlock(nn.Module):
self.GroupNorm_0 = nn.GroupNorm(num_groups=num_groups, num_channels=channels, eps=1e-6) self.GroupNorm_0 = nn.GroupNorm(num_groups=num_groups, num_channels=channels, eps=1e-6)
else: else:
self.proj_out = zero_module(nn.Conv1d(channels, channels, 1)) self.proj_out = nn.Conv1d(channels, channels, 1)
self.set_weights(self) self.set_weights(self)
self.is_overwritten = False self.is_overwritten = False
@ -385,7 +383,7 @@ class AttentionBlock(nn.Module):
self.qkv.weight.data = qkv_weight self.qkv.weight.data = qkv_weight
self.qkv.bias.data = qkv_bias self.qkv.bias.data = qkv_bias
proj_out = zero_module(nn.Conv1d(self.channels, self.channels, 1)) proj_out = nn.Conv1d(self.channels, self.channels, 1)
proj_out.weight.data = module.proj_out.weight.data[:, :, :, 0] proj_out.weight.data = module.proj_out.weight.data[:, :, :, 0]
proj_out.bias.data = module.proj_out.bias.data proj_out.bias.data = module.proj_out.bias.data

View File

@ -0,0 +1,632 @@
import functools
import math
from typing import Dict, Union
import numpy as np
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin
from ..modeling_utils import ModelMixin
from .attention import AttentionBlock, SpatialTransformer
from .embeddings import GaussianFourierProjection, get_timestep_embedding
from .resnet import Downsample2D, FirDownsample2D, FirUpsample2D, ResnetBlock2D, Upsample2D
from .unet_new import UNetMidBlock2DCrossAttn, get_down_block, get_up_block
class Combine(nn.Module):
"""Combine information from skip connections."""
def __init__(self, dim1, dim2, method="cat"):
super().__init__()
# 1x1 convolution with DDPM initialization.
self.Conv_0 = nn.Conv2d(dim1, dim2, kernel_size=1, padding=0)
self.method = method
# def forward(self, x, y):
# h = self.Conv_0(x)
# if self.method == "cat":
# return torch.cat([h, y], dim=1)
# elif self.method == "sum":
# return h + y
# else:
# raise ValueError(f"Method {self.method} not recognized.")
class TimestepEmbedding(nn.Module):
def __init__(self, channel, time_embed_dim, act_fn="silu"):
super().__init__()
self.linear_1 = nn.Linear(channel, time_embed_dim)
self.act = None
if act_fn == "silu":
self.act = nn.SiLU()
self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim)
def forward(self, sample):
sample = self.linear_1(sample)
if self.act is not None:
sample = self.act(sample)
sample = self.linear_2(sample)
return sample
class Timesteps(nn.Module):
def __init__(self, num_channels, flip_sin_to_cos, downscale_freq_shift):
super().__init__()
self.num_channels = num_channels
self.flip_sin_to_cos = flip_sin_to_cos
self.downscale_freq_shift = downscale_freq_shift
def forward(self, timesteps):
t_emb = get_timestep_embedding(
timesteps,
self.num_channels,
flip_sin_to_cos=self.flip_sin_to_cos,
downscale_freq_shift=self.downscale_freq_shift,
)
return t_emb
class UNetConditionalModel(ModelMixin, ConfigMixin):
"""
The full UNet model with attention and timestep embedding. :param in_channels: channels in the input Tensor. :param
model_channels: base channel count for the model. :param out_channels: channels in the output Tensor. :param
num_res_blocks: number of residual blocks per downsample. :param attention_resolutions: a collection of downsample
rates at which
attention will take place. May be a set, list, or tuple. For example, if this contains 4, then at 4x
downsampling, attention will be used.
:param dropout: the dropout probability. :param channel_mult: channel multiplier for each level of the UNet. :param
conv_resample: if True, use learned convolutions for upsampling and
downsampling.
:param dims: determines if the signal is 1D, 2D, or 3D. :param num_classes: if specified (as an int), then this
model will be
class-conditional with `num_classes` classes.
:param use_checkpoint: use gradient checkpointing to reduce memory usage. :param num_heads: the number of attention
heads in each attention layer. :param num_heads_channels: if specified, ignore num_heads and instead use
a fixed channel width per attention head.
:param num_heads_upsample: works with num_heads to set a different number
of heads for upsampling. Deprecated.
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism. :param resblock_updown: use residual blocks
for up/downsampling. :param use_new_attention_order: use a different attention pattern for potentially
increased efficiency.
"""
def __init__(
self,
image_size=None,
in_channels=4,
out_channels=4,
num_res_blocks=2,
dropout=0,
block_channels=(320, 640, 1280, 1280),
down_blocks=(
"UNetResCrossAttnDownBlock2D",
"UNetResCrossAttnDownBlock2D",
"UNetResCrossAttnDownBlock2D",
"UNetResDownBlock2D",
),
downsample_padding=1,
up_blocks=(
"UNetResUpBlock2D",
"UNetResCrossAttnUpBlock2D",
"UNetResCrossAttnUpBlock2D",
"UNetResCrossAttnUpBlock2D",
),
resnet_act_fn="silu",
resnet_eps=1e-5,
conv_resample=True,
num_head_channels=8,
flip_sin_to_cos=True,
downscale_freq_shift=0,
mid_block_scale_factor=1,
center_input_sample=False,
# TODO(PVP) - to delete later at release
# IMPORTANT: NOT RELEVANT WHEN REVIEWING API
# ======================================
# LDM
attention_resolutions=(4, 2, 1),
# DDPM
out_ch=None,
resolution=None,
attn_resolutions=None,
resamp_with_conv=None,
ch_mult=None,
ch=None,
ddpm=False,
# SDE
sde=False,
nf=None,
fir=None,
progressive=None,
progressive_combine=None,
scale_by_sigma=None,
skip_rescale=None,
num_channels=None,
centered=False,
conditional=True,
conv_size=3,
fir_kernel=(1, 3, 3, 1),
fourier_scale=16,
init_scale=0.0,
progressive_input="input_skip",
resnet_num_groups=32,
continuous=True,
ldm=False,
):
super().__init__()
# register all __init__ params to be accessible via `self.config.<...>`
# should probably be automated down the road as this is pure boiler plate code
self.register_to_config(
image_size=image_size,
in_channels=in_channels,
block_channels=block_channels,
downsample_padding=downsample_padding,
out_channels=out_channels,
num_res_blocks=num_res_blocks,
down_blocks=down_blocks,
up_blocks=up_blocks,
dropout=dropout,
resnet_eps=resnet_eps,
conv_resample=conv_resample,
num_head_channels=num_head_channels,
flip_sin_to_cos=flip_sin_to_cos,
downscale_freq_shift=downscale_freq_shift,
attention_resolutions=attention_resolutions,
attn_resolutions=attn_resolutions,
mid_block_scale_factor=mid_block_scale_factor,
resnet_num_groups=resnet_num_groups,
center_input_sample=center_input_sample,
)
self.ldm = ldm
# TODO(PVP) - to delete later at release
# IMPORTANT: NOT RELEVANT WHEN REVIEWING API
# ======================================
self.image_size = image_size
time_embed_dim = block_channels[0] * 4
# ======================================
# input
self.conv_in = nn.Conv2d(in_channels, block_channels[0], kernel_size=3, padding=(1, 1))
# time
self.time_steps = Timesteps(block_channels[0], flip_sin_to_cos, downscale_freq_shift)
timestep_input_dim = block_channels[0]
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
self.downsample_blocks = nn.ModuleList([])
self.mid = None
self.upsample_blocks = nn.ModuleList([])
# down
output_channel = block_channels[0]
for i, down_block_type in enumerate(down_blocks):
input_channel = output_channel
output_channel = block_channels[i]
is_final_block = i == len(block_channels) - 1
down_block = get_down_block(
down_block_type,
num_layers=num_res_blocks,
in_channels=input_channel,
out_channels=output_channel,
temb_channels=time_embed_dim,
add_downsample=not is_final_block,
resnet_eps=resnet_eps,
resnet_act_fn=resnet_act_fn,
attn_num_head_channels=num_head_channels,
downsample_padding=downsample_padding,
)
self.downsample_blocks.append(down_block)
# mid
self.mid = UNetMidBlock2DCrossAttn(
in_channels=block_channels[-1],
dropout=dropout,
temb_channels=time_embed_dim,
resnet_eps=resnet_eps,
resnet_act_fn=resnet_act_fn,
output_scale_factor=mid_block_scale_factor,
resnet_time_scale_shift="default",
attn_num_head_channels=num_head_channels,
resnet_groups=resnet_num_groups,
)
# up
reversed_block_channels = list(reversed(block_channels))
output_channel = reversed_block_channels[0]
for i, up_block_type in enumerate(up_blocks):
prev_output_channel = output_channel
output_channel = reversed_block_channels[i]
input_channel = reversed_block_channels[min(i + 1, len(block_channels) - 1)]
is_final_block = i == len(block_channels) - 1
up_block = get_up_block(
up_block_type,
num_layers=num_res_blocks + 1,
in_channels=input_channel,
out_channels=output_channel,
prev_output_channel=prev_output_channel,
temb_channels=time_embed_dim,
add_upsample=not is_final_block,
resnet_eps=resnet_eps,
resnet_act_fn=resnet_act_fn,
attn_num_head_channels=num_head_channels,
)
self.upsample_blocks.append(up_block)
prev_output_channel = output_channel
# out
num_groups_out = resnet_num_groups if resnet_num_groups is not None else min(block_channels[0] // 4, 32)
self.conv_norm_out = nn.GroupNorm(num_channels=block_channels[0], num_groups=num_groups_out, eps=resnet_eps)
self.conv_act = nn.SiLU()
self.conv_out = nn.Conv2d(block_channels[0], out_channels, 3, padding=1)
# ======================== Out ====================
# =========== TO DELETE AFTER CONVERSION ==========
# TODO(PVP) - to delete later at release
# IMPORTANT: NOT RELEVANT WHEN REVIEWING API
# ======================================
self.is_overwritten = False
if ldm:
num_heads = 8
num_head_channels = -1
transformer_depth = 1
use_spatial_transformer = True
context_dim = 1280
legacy = False
model_channels = block_channels[0]
channel_mult = tuple([x // model_channels for x in block_channels])
self.init_for_ldm(
in_channels,
model_channels,
channel_mult,
num_res_blocks,
dropout,
time_embed_dim,
attention_resolutions,
num_head_channels,
num_heads,
legacy,
False,
transformer_depth,
context_dim,
conv_resample,
out_channels,
)
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
) -> Dict[str, torch.FloatTensor]:
# TODO(PVP) - to delete later at release
# IMPORTANT: NOT RELEVANT WHEN REVIEWING API
# ======================================
if not self.is_overwritten:
self.set_weights()
if self.config.center_input_sample:
sample = 2 * sample - 1.0
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
t_emb = self.time_steps(timesteps)
emb = self.time_embedding(t_emb)
# 2. pre-process
skip_sample = sample
sample = self.conv_in(sample)
# 3. down
down_block_res_samples = (sample,)
for downsample_block in self.downsample_blocks:
if hasattr(downsample_block, "attentions") and downsample_block.attentions is not None:
sample, res_samples = downsample_block(
hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states
)
else:
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
down_block_res_samples += res_samples
# 4. mid
sample = self.mid(sample, emb, encoder_hidden_states=encoder_hidden_states)
# 5. up
skip_sample = None
for upsample_block in self.upsample_blocks:
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
if hasattr(upsample_block, "attentions") and upsample_block.attentions is not None:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
)
else:
sample = upsample_block(hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples)
# 6. post-process
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
output = {"sample": sample}
return output
# !!!IMPORTANT - ALL OF THE FOLLOWING CODE WILL BE DELETED AT RELEASE TIME AND SHOULD NOT BE TAKEN INTO CONSIDERATION WHEN EVALUATING THE API ###
# =================================================================================================================================================
def set_weights(self):
self.is_overwritten = True
if self.ldm:
self.time_embedding.linear_1.weight.data = self.time_embed[0].weight.data
self.time_embedding.linear_1.bias.data = self.time_embed[0].bias.data
self.time_embedding.linear_2.weight.data = self.time_embed[2].weight.data
self.time_embedding.linear_2.bias.data = self.time_embed[2].bias.data
self.conv_in.weight.data = self.input_blocks[0][0].weight.data
self.conv_in.bias.data = self.input_blocks[0][0].bias.data
# ================ SET WEIGHTS OF ALL WEIGHTS ==================
for i, input_layer in enumerate(self.input_blocks[1:]):
block_id = i // (self.config.num_res_blocks + 1)
layer_in_block_id = i % (self.config.num_res_blocks + 1)
if layer_in_block_id == 2:
self.downsample_blocks[block_id].downsamplers[0].conv.weight.data = input_layer[0].op.weight.data
self.downsample_blocks[block_id].downsamplers[0].conv.bias.data = input_layer[0].op.bias.data
elif len(input_layer) > 1:
self.downsample_blocks[block_id].resnets[layer_in_block_id].set_weight(input_layer[0])
self.downsample_blocks[block_id].attentions[layer_in_block_id].set_weight(input_layer[1])
else:
self.downsample_blocks[block_id].resnets[layer_in_block_id].set_weight(input_layer[0])
self.mid.resnets[0].set_weight(self.middle_block[0])
self.mid.resnets[1].set_weight(self.middle_block[2])
self.mid.attentions[0].set_weight(self.middle_block[1])
for i, input_layer in enumerate(self.output_blocks):
block_id = i // (self.config.num_res_blocks + 1)
layer_in_block_id = i % (self.config.num_res_blocks + 1)
if len(input_layer) > 2:
self.upsample_blocks[block_id].resnets[layer_in_block_id].set_weight(input_layer[0])
self.upsample_blocks[block_id].attentions[layer_in_block_id].set_weight(input_layer[1])
self.upsample_blocks[block_id].upsamplers[0].conv.weight.data = input_layer[2].conv.weight.data
self.upsample_blocks[block_id].upsamplers[0].conv.bias.data = input_layer[2].conv.bias.data
elif len(input_layer) > 1 and "Upsample2D" in input_layer[1].__class__.__name__:
self.upsample_blocks[block_id].resnets[layer_in_block_id].set_weight(input_layer[0])
self.upsample_blocks[block_id].upsamplers[0].conv.weight.data = input_layer[1].conv.weight.data
self.upsample_blocks[block_id].upsamplers[0].conv.bias.data = input_layer[1].conv.bias.data
elif len(input_layer) > 1:
self.upsample_blocks[block_id].resnets[layer_in_block_id].set_weight(input_layer[0])
self.upsample_blocks[block_id].attentions[layer_in_block_id].set_weight(input_layer[1])
else:
self.upsample_blocks[block_id].resnets[layer_in_block_id].set_weight(input_layer[0])
self.conv_norm_out.weight.data = self.out[0].weight.data
self.conv_norm_out.bias.data = self.out[0].bias.data
self.conv_out.weight.data = self.out[2].weight.data
self.conv_out.bias.data = self.out[2].bias.data
self.remove_ldm()
def init_for_ldm(
self,
in_channels,
model_channels,
channel_mult,
num_res_blocks,
dropout,
time_embed_dim,
attention_resolutions,
num_head_channels,
num_heads,
legacy,
use_spatial_transformer,
transformer_depth,
context_dim,
conv_resample,
out_channels,
):
# TODO(PVP) - delete after weight conversion
class TimestepEmbedSequential(nn.Sequential):
"""
A sequential module that passes timestep embeddings to the children that support it as an extra input.
"""
pass
# TODO(PVP) - delete after weight conversion
def conv_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D convolution module.
"""
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
return nn.Conv3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
self.time_embed = nn.Sequential(
nn.Linear(model_channels, time_embed_dim),
nn.SiLU(),
nn.Linear(time_embed_dim, time_embed_dim),
)
dims = 2
self.input_blocks = nn.ModuleList(
[TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))]
)
self._feature_size = model_channels
input_block_chans = [model_channels]
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for _ in range(num_res_blocks):
layers = [
ResnetBlock2D(
in_channels=ch,
out_channels=mult * model_channels,
dropout=dropout,
temb_channels=time_embed_dim,
eps=1e-5,
non_linearity="silu",
overwrite_for_ldm=True,
)
]
ch = mult * model_channels
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
# num_heads = 1
dim_head = num_head_channels
layers.append(
SpatialTransformer(
ch,
num_heads,
dim_head,
depth=transformer_depth,
context_dim=context_dim,
),
)
self.input_blocks.append(TimestepEmbedSequential(*layers))
self._feature_size += ch
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
TimestepEmbedSequential(
Downsample2D(ch, use_conv=conv_resample, out_channels=out_ch, padding=1, name="op")
)
)
ch = out_ch
input_block_chans.append(ch)
ds *= 2
self._feature_size += ch
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
# num_heads = 1
dim_head = num_head_channels
if dim_head < 0:
dim_head = None
# TODO(Patrick) - delete after weight conversion
# init to be able to overwrite `self.mid`
self.middle_block = TimestepEmbedSequential(
ResnetBlock2D(
in_channels=ch,
out_channels=None,
dropout=dropout,
temb_channels=time_embed_dim,
eps=1e-5,
non_linearity="silu",
overwrite_for_ldm=True,
),
SpatialTransformer(
ch,
num_heads,
dim_head,
depth=transformer_depth,
context_dim=context_dim,
),
ResnetBlock2D(
in_channels=ch,
out_channels=None,
dropout=dropout,
temb_channels=time_embed_dim,
eps=1e-5,
non_linearity="silu",
overwrite_for_ldm=True,
),
)
self._feature_size += ch
self.output_blocks = nn.ModuleList([])
for level, mult in list(enumerate(channel_mult))[::-1]:
for i in range(num_res_blocks + 1):
ich = input_block_chans.pop()
layers = [
ResnetBlock2D(
in_channels=ch + ich,
out_channels=model_channels * mult,
dropout=dropout,
temb_channels=time_embed_dim,
eps=1e-5,
non_linearity="silu",
overwrite_for_ldm=True,
),
]
ch = model_channels * mult
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
# num_heads = 1
dim_head = num_head_channels
layers.append(
SpatialTransformer(
ch,
num_heads,
dim_head,
depth=transformer_depth,
context_dim=context_dim,
)
)
if level and i == num_res_blocks:
out_ch = ch
layers.append(Upsample2D(ch, use_conv=conv_resample, out_channels=out_ch))
ds //= 2
self.output_blocks.append(TimestepEmbedSequential(*layers))
self._feature_size += ch
self.out = nn.Sequential(
nn.GroupNorm(num_channels=model_channels, num_groups=32, eps=1e-5),
nn.SiLU(),
nn.Conv2d(model_channels, out_channels, 3, padding=1),
)
def remove_ldm(self):
del self.time_embed
del self.input_blocks
del self.middle_block
del self.output_blocks
del self.out

View File

@ -17,7 +17,7 @@ import numpy as np
import torch import torch
from torch import nn from torch import nn
from .attention import AttentionBlockNew from .attention import AttentionBlockNew, SpatialTransformer
from .resnet import Downsample2D, FirDownsample2D, FirUpsample2D, ResnetBlock, Upsample2D from .resnet import Downsample2D, FirDownsample2D, FirUpsample2D, ResnetBlock, Upsample2D
@ -56,6 +56,18 @@ def get_down_block(
downsample_padding=downsample_padding, downsample_padding=downsample_padding,
attn_num_head_channels=attn_num_head_channels, attn_num_head_channels=attn_num_head_channels,
) )
elif down_block_type == "UNetResCrossAttnDownBlock2D":
return UNetResCrossAttnDownBlock2D(
num_layers=num_layers,
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
add_downsample=add_downsample,
resnet_eps=resnet_eps,
resnet_act_fn=resnet_act_fn,
downsample_padding=downsample_padding,
attn_num_head_channels=attn_num_head_channels,
)
elif down_block_type == "UNetResSkipDownBlock2D": elif down_block_type == "UNetResSkipDownBlock2D":
return UNetResSkipDownBlock2D( return UNetResSkipDownBlock2D(
num_layers=num_layers, num_layers=num_layers,
@ -104,6 +116,18 @@ def get_up_block(
resnet_eps=resnet_eps, resnet_eps=resnet_eps,
resnet_act_fn=resnet_act_fn, resnet_act_fn=resnet_act_fn,
) )
elif up_block_type == "UNetResCrossAttnUpBlock2D":
return UNetResCrossAttnUpBlock2D(
num_layers=num_layers,
in_channels=in_channels,
out_channels=out_channels,
prev_output_channel=prev_output_channel,
temb_channels=temb_channels,
add_upsample=add_upsample,
resnet_eps=resnet_eps,
resnet_act_fn=resnet_act_fn,
attn_num_head_channels=attn_num_head_channels,
)
elif up_block_type == "UNetResAttnUpBlock2D": elif up_block_type == "UNetResAttnUpBlock2D":
return UNetResAttnUpBlock2D( return UNetResAttnUpBlock2D(
num_layers=num_layers, num_layers=num_layers,
@ -221,6 +245,83 @@ class UNetMidBlock2D(nn.Module):
return hidden_states return hidden_states
class UNetMidBlock2DCrossAttn(nn.Module):
def __init__(
self,
in_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
attn_num_head_channels=1,
attention_type="default",
output_scale_factor=1.0,
cross_attention_dim=1280,
**kwargs,
):
super().__init__()
self.attention_type = attention_type
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
# there is always at least one resnet
resnets = [
ResnetBlock(
in_channels=in_channels,
out_channels=in_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
]
attentions = []
for _ in range(num_layers):
attentions.append(
SpatialTransformer(
in_channels,
attn_num_head_channels,
in_channels // attn_num_head_channels,
depth=1,
context_dim=cross_attention_dim,
)
)
resnets.append(
ResnetBlock(
in_channels=in_channels,
out_channels=in_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
hidden_states = self.resnets[0](hidden_states, temb)
for attn, resnet in zip(self.attentions, self.resnets[1:]):
hidden_states = attn(hidden_states, encoder_hidden_states)
hidden_states = resnet(hidden_states, temb)
return hidden_states
class UNetResAttnDownBlock2D(nn.Module): class UNetResAttnDownBlock2D(nn.Module):
def __init__( def __init__(
self, self,
@ -302,6 +403,88 @@ class UNetResAttnDownBlock2D(nn.Module):
return hidden_states, output_states return hidden_states, output_states
class UNetResCrossAttnDownBlock2D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
attn_num_head_channels=1,
cross_attention_dim=1280,
attention_type="default",
output_scale_factor=1.0,
downsample_padding=1,
add_downsample=True,
):
super().__init__()
resnets = []
attentions = []
self.attention_type = attention_type
for i in range(num_layers):
in_channels = in_channels if i == 0 else out_channels
resnets.append(
ResnetBlock(
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
attentions.append(
SpatialTransformer(
out_channels,
attn_num_head_channels,
out_channels // attn_num_head_channels,
depth=1,
context_dim=cross_attention_dim,
)
)
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
if add_downsample:
self.downsamplers = nn.ModuleList(
[
Downsample2D(
in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
)
]
)
else:
self.downsamplers = None
def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
output_states = ()
for resnet, attn in zip(self.resnets, self.attentions):
hidden_states = resnet(hidden_states, temb)
hidden_states = attn(hidden_states, context=encoder_hidden_states)
output_states += (hidden_states,)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
output_states += (hidden_states,)
return hidden_states, output_states
class UNetResDownBlock2D(nn.Module): class UNetResDownBlock2D(nn.Module):
def __init__( def __init__(
self, self,
@ -618,6 +801,86 @@ class UNetResAttnUpBlock2D(nn.Module):
return hidden_states return hidden_states
class UNetResCrossAttnUpBlock2D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
prev_output_channel: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
attn_num_head_channels=1,
cross_attention_dim=1280,
attention_type="default",
output_scale_factor=1.0,
downsample_padding=1,
add_upsample=True,
):
super().__init__()
resnets = []
attentions = []
self.attention_type = attention_type
for i in range(num_layers):
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
resnet_in_channels = prev_output_channel if i == 0 else out_channels
resnets.append(
ResnetBlock(
in_channels=resnet_in_channels + res_skip_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
attentions.append(
SpatialTransformer(
out_channels,
attn_num_head_channels,
out_channels // attn_num_head_channels,
depth=1,
context_dim=cross_attention_dim,
)
)
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
if add_upsample:
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
else:
self.upsamplers = None
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, encoder_hidden_states=None):
for resnet, attn in zip(self.resnets, self.attentions):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
hidden_states = resnet(hidden_states, temb)
hidden_states = attn(hidden_states, context=encoder_hidden_states)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states)
return hidden_states
class UNetResUpBlock2D(nn.Module): class UNetResUpBlock2D(nn.Module):
def __init__( def __init__(
self, self,
@ -765,8 +1028,6 @@ class UNetResAttnSkipUpBlock2D(nn.Module):
self.act = None self.act = None
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None): def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None):
output_states = ()
for resnet in self.resnets: for resnet in self.resnets:
# pop res hidden states # pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states = res_hidden_states_tuple[-1]
@ -864,8 +1125,6 @@ class UNetResSkipUpBlock2D(nn.Module):
self.act = None self.act = None
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None): def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None):
output_states = ()
for resnet in self.resnets: for resnet in self.resnets:
# pop res hidden states # pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states = res_hidden_states_tuple[-1]

View File

@ -1,6 +1,5 @@
from typing import Optional, Tuple, Union from typing import Optional, Tuple, Union
import numpy as np
import torch import torch
import torch.nn as nn import torch.nn as nn
import torch.utils.checkpoint import torch.utils.checkpoint
@ -15,6 +14,69 @@ from transformers.utils import logging
from ...pipeline_utils import DiffusionPipeline from ...pipeline_utils import DiffusionPipeline
class LatentDiffusionPipeline(DiffusionPipeline):
def __init__(self, vqvae, bert, tokenizer, unet, scheduler):
super().__init__()
scheduler = scheduler.set_format("pt")
self.register_modules(vqvae=vqvae, bert=bert, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
@torch.no_grad()
def __call__(
self,
prompt,
batch_size=1,
generator=None,
torch_device=None,
eta=0.0,
guidance_scale=1.0,
num_inference_steps=50,
):
# eta corresponds to η in paper and should be between [0, 1]
if torch_device is None:
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
self.unet.to(torch_device)
self.vqvae.to(torch_device)
self.bert.to(torch_device)
# get unconditional embeddings for classifier free guidence
if guidance_scale != 1.0:
uncond_input = self.tokenizer([""], padding="max_length", max_length=77, return_tensors="pt").to(
torch_device
)
uncond_embeddings = self.bert(uncond_input.input_ids)
# get text embedding
text_input = self.tokenizer(prompt, padding="max_length", max_length=77, return_tensors="pt").to(torch_device)
text_embedding = self.bert(text_input.input_ids)
image = torch.randn(
(batch_size, self.unet.in_channels, self.unet.image_size, self.unet.image_size),
generator=generator,
).to(torch_device)
self.scheduler.set_timesteps(num_inference_steps)
for t in tqdm.tqdm(self.scheduler.timesteps):
# 1. predict noise residual
pred_noise_t = self.unet(image, t, encoder_hidden_states=text_embedding)
if isinstance(pred_noise_t, dict):
pred_noise_t = pred_noise_t["sample"]
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# do x_t -> x_t-1
image = self.scheduler.step(pred_noise_t, t, image, eta)["prev_sample"]
# scale and decode image with vae
image = 1 / 0.18215 * image
image = self.vqvae.decode(image)
image = torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)
return image
################################################################################ ################################################################################
# Code for the text transformer model # Code for the text transformer model
################################################################################ ################################################################################
@ -541,101 +603,4 @@ class LDMBertModel(LDMBertPreTrainedModel):
return_dict=return_dict, return_dict=return_dict,
) )
sequence_output = outputs[0] sequence_output = outputs[0]
return sequence_output return sequence_output
class LatentDiffusionPipeline(DiffusionPipeline):
def __init__(self, vqvae, bert, tokenizer, unet, scheduler):
super().__init__()
scheduler = scheduler.set_format("pt")
self.register_modules(vqvae=vqvae, bert=bert, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
@torch.no_grad()
def __call__(
self,
prompt,
batch_size=1,
generator=None,
torch_device=None,
eta=0.0,
guidance_scale=1.0,
num_inference_steps=50,
):
# eta corresponds to η in paper and should be between [0, 1]
if torch_device is None:
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
self.unet.to(torch_device)
self.vqvae.to(torch_device)
self.bert.to(torch_device)
# get unconditional embeddings for classifier free guidence
if guidance_scale != 1.0:
uncond_input = self.tokenizer([""], padding="max_length", max_length=77, return_tensors="pt").to(
torch_device
)
uncond_embeddings = self.bert(uncond_input.input_ids)
# get text embedding
text_input = self.tokenizer(prompt, padding="max_length", max_length=77, return_tensors="pt").to(torch_device)
text_embedding = self.bert(text_input.input_ids)
num_trained_timesteps = self.scheduler.config.timesteps
inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps)
image = torch.randn(
(batch_size, self.unet.in_channels, self.unet.image_size, self.unet.image_size),
generator=generator,
).to(torch_device)
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_image -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_image_direction -> "direction pointingc to x_t"
# - pred_prev_image -> "x_t-1"
for t in tqdm(reversed(range(num_inference_steps)), total=num_inference_steps):
# guidance_scale of 1 means no guidance
if guidance_scale == 1.0:
image_in = image
context = text_embedding
timesteps = torch.tensor([inference_step_times[t]] * image.shape[0], device=torch_device)
else:
# for classifier free guidance, we need to do two forward passes
# here we concanate embedding and unconditioned embedding in a single batch
# to avoid doing two forward passes
image_in = torch.cat([image] * 2)
context = torch.cat([uncond_embeddings, text_embedding])
timesteps = torch.tensor([inference_step_times[t]] * image.shape[0], device=torch_device)
# 1. predict noise residual
pred_noise_t = self.unet(image_in, timesteps, context=context)
# perform guidance
if guidance_scale != 1.0:
pred_noise_t_uncond, pred_noise_t = pred_noise_t.chunk(2)
pred_noise_t = pred_noise_t_uncond + guidance_scale * (pred_noise_t - pred_noise_t_uncond)
# 2. predict previous mean of image x_t-1
pred_prev_image = self.scheduler.step(pred_noise_t, image, t, num_inference_steps, eta)
# 3. optionally sample variance
variance = 0
if eta > 0:
noise = torch.randn(image.shape, generator=generator).to(image.device)
variance = self.scheduler.get_variance(t, num_inference_steps).sqrt() * eta * noise
# 4. set current image to prev_image: x_t -> x_t-1
image = pred_prev_image + variance
# scale and decode image with vae
image = 1 / 0.18215 * image
image = self.vqvae.decode(image)
image = torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)
return image

View File

@ -40,14 +40,17 @@ from diffusers import (
ScoreSdeVeScheduler, ScoreSdeVeScheduler,
ScoreSdeVpPipeline, ScoreSdeVpPipeline,
ScoreSdeVpScheduler, ScoreSdeVpScheduler,
UNetConditionalModel,
UNetLDMModel, UNetLDMModel,
UNetUnconditionalModel, UNetUnconditionalModel,
VQModel, VQModel,
) )
from diffusers.configuration_utils import ConfigMixin from diffusers.configuration_utils import ConfigMixin
from diffusers.pipeline_utils import DiffusionPipeline from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.latent_diffusion.pipeline_latent_diffusion import LDMBertModel
from diffusers.testing_utils import floats_tensor, slow, torch_device from diffusers.testing_utils import floats_tensor, slow, torch_device
from diffusers.training_utils import EMAModel from diffusers.training_utils import EMAModel
from transformers import BertTokenizer
torch.backends.cuda.matmul.allow_tf32 = False torch.backends.cuda.matmul.allow_tf32 = False
@ -827,7 +830,7 @@ class VQModelTests(ModelTesterMixin, unittest.TestCase):
self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2)) self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
class AutoEncoderKLTests(ModelTesterMixin, unittest.TestCase): class AutoencoderKLTests(ModelTesterMixin, unittest.TestCase):
model_class = AutoencoderKL model_class = AutoencoderKL
@property @property
@ -1026,10 +1029,8 @@ class PipelineTesterMixin(unittest.TestCase):
assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2 assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
@slow @slow
@unittest.skip("Skipping for now as it takes too long")
def test_ldm_text2img(self): def test_ldm_text2img(self):
model_id = "fusing/latent-diffusion-text2im-large" ldm = LatentDiffusionPipeline.from_pretrained("/home/patrick/latent-diffusion-text2im-large")
ldm = LatentDiffusionPipeline.from_pretrained(model_id)
prompt = "A painting of a squirrel eating a burger" prompt = "A painting of a squirrel eating a burger"
generator = torch.manual_seed(0) generator = torch.manual_seed(0)
@ -1043,8 +1044,7 @@ class PipelineTesterMixin(unittest.TestCase):
@slow @slow
def test_ldm_text2img_fast(self): def test_ldm_text2img_fast(self):
model_id = "fusing/latent-diffusion-text2im-large" ldm = LatentDiffusionPipeline.from_pretrained("/home/patrick/latent-diffusion-text2im-large")
ldm = LatentDiffusionPipeline.from_pretrained(model_id)
prompt = "A painting of a squirrel eating a burger" prompt = "A painting of a squirrel eating a burger"
generator = torch.manual_seed(0) generator = torch.manual_seed(0)
@ -1074,6 +1074,7 @@ class PipelineTesterMixin(unittest.TestCase):
@slow @slow
def test_score_sde_ve_pipeline(self): def test_score_sde_ve_pipeline(self):
model = UNetUnconditionalModel.from_pretrained("fusing/ffhq_ncsnpp", sde=True) model = UNetUnconditionalModel.from_pretrained("fusing/ffhq_ncsnpp", sde=True)
model = UNetUnconditionalModel.from_pretrained("google/ffhq_ncsnpp")
torch.manual_seed(0) torch.manual_seed(0)
if torch.cuda.is_available(): if torch.cuda.is_available():