[Dummy imports] Better error message (#795)
* [Dummy imports] Better error message * Test: load pipeline with LMS scheduler. Fails with a cryptic message if scipy is not installed. * Correct Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
This commit is contained in:
parent
966e2fc461
commit
db47b1e4d9
|
@ -49,6 +49,7 @@ if is_transformers_available():
|
|||
|
||||
INDEX_FILE = "diffusion_pytorch_model.bin"
|
||||
CUSTOM_PIPELINE_FILE_NAME = "pipeline.py"
|
||||
DUMMY_MODULES_FOLDER = "diffusers.utils"
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
@ -467,9 +468,20 @@ class DiffusionPipeline(ConfigMixin):
|
|||
if issubclass(class_obj, class_candidate):
|
||||
load_method_name = importable_classes[class_name][1]
|
||||
|
||||
load_method = getattr(class_obj, load_method_name)
|
||||
if load_method_name is None:
|
||||
none_module = class_obj.__module__
|
||||
if none_module.startswith(DUMMY_MODULES_FOLDER) and "dummy" in none_module:
|
||||
# call class_obj for nice error message of missing requirements
|
||||
class_obj()
|
||||
|
||||
raise ValueError(
|
||||
f"The component {class_obj} of {pipeline_class} cannot be loaded as it does not seem to have"
|
||||
f" any of the loading methods defined in {ALL_IMPORTABLE_CLASSES}."
|
||||
)
|
||||
|
||||
load_method = getattr(class_obj, load_method_name)
|
||||
loading_kwargs = {}
|
||||
|
||||
if issubclass(class_obj, torch.nn.Module):
|
||||
loading_kwargs["torch_dtype"] = torch_dtype
|
||||
if issubclass(class_obj, diffusers.OnnxRuntimeModel):
|
||||
|
|
|
@ -9,3 +9,11 @@ class FlaxStableDiffusionPipeline(metaclass=DummyObject):
|
|||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["flax", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["flax", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["flax", "transformers"])
|
||||
|
|
|
@ -10,6 +10,14 @@ class FlaxModelMixin(metaclass=DummyObject):
|
|||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["flax"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["flax"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["flax"])
|
||||
|
||||
|
||||
class FlaxUNet2DConditionModel(metaclass=DummyObject):
|
||||
_backends = ["flax"]
|
||||
|
@ -17,6 +25,14 @@ class FlaxUNet2DConditionModel(metaclass=DummyObject):
|
|||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["flax"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["flax"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["flax"])
|
||||
|
||||
|
||||
class FlaxAutoencoderKL(metaclass=DummyObject):
|
||||
_backends = ["flax"]
|
||||
|
@ -24,6 +40,14 @@ class FlaxAutoencoderKL(metaclass=DummyObject):
|
|||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["flax"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["flax"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["flax"])
|
||||
|
||||
|
||||
class FlaxDiffusionPipeline(metaclass=DummyObject):
|
||||
_backends = ["flax"]
|
||||
|
@ -31,6 +55,14 @@ class FlaxDiffusionPipeline(metaclass=DummyObject):
|
|||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["flax"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["flax"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["flax"])
|
||||
|
||||
|
||||
class FlaxDDIMScheduler(metaclass=DummyObject):
|
||||
_backends = ["flax"]
|
||||
|
@ -38,6 +70,14 @@ class FlaxDDIMScheduler(metaclass=DummyObject):
|
|||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["flax"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["flax"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["flax"])
|
||||
|
||||
|
||||
class FlaxDDPMScheduler(metaclass=DummyObject):
|
||||
_backends = ["flax"]
|
||||
|
@ -45,6 +85,14 @@ class FlaxDDPMScheduler(metaclass=DummyObject):
|
|||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["flax"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["flax"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["flax"])
|
||||
|
||||
|
||||
class FlaxKarrasVeScheduler(metaclass=DummyObject):
|
||||
_backends = ["flax"]
|
||||
|
@ -52,6 +100,14 @@ class FlaxKarrasVeScheduler(metaclass=DummyObject):
|
|||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["flax"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["flax"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["flax"])
|
||||
|
||||
|
||||
class FlaxLMSDiscreteScheduler(metaclass=DummyObject):
|
||||
_backends = ["flax"]
|
||||
|
@ -59,6 +115,14 @@ class FlaxLMSDiscreteScheduler(metaclass=DummyObject):
|
|||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["flax"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["flax"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["flax"])
|
||||
|
||||
|
||||
class FlaxPNDMScheduler(metaclass=DummyObject):
|
||||
_backends = ["flax"]
|
||||
|
@ -66,6 +130,14 @@ class FlaxPNDMScheduler(metaclass=DummyObject):
|
|||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["flax"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["flax"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["flax"])
|
||||
|
||||
|
||||
class FlaxSchedulerMixin(metaclass=DummyObject):
|
||||
_backends = ["flax"]
|
||||
|
@ -73,9 +145,25 @@ class FlaxSchedulerMixin(metaclass=DummyObject):
|
|||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["flax"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["flax"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["flax"])
|
||||
|
||||
|
||||
class FlaxScoreSdeVeScheduler(metaclass=DummyObject):
|
||||
_backends = ["flax"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["flax"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["flax"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["flax"])
|
||||
|
|
|
@ -10,6 +10,14 @@ class ModelMixin(metaclass=DummyObject):
|
|||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class AutoencoderKL(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
@ -17,6 +25,14 @@ class AutoencoderKL(metaclass=DummyObject):
|
|||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class UNet2DConditionModel(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
@ -24,6 +40,14 @@ class UNet2DConditionModel(metaclass=DummyObject):
|
|||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class UNet2DModel(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
@ -31,6 +55,14 @@ class UNet2DModel(metaclass=DummyObject):
|
|||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class VQModel(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
@ -38,6 +70,14 @@ class VQModel(metaclass=DummyObject):
|
|||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
def get_constant_schedule(*args, **kwargs):
|
||||
requires_backends(get_constant_schedule, ["torch"])
|
||||
|
@ -73,6 +113,14 @@ class DiffusionPipeline(metaclass=DummyObject):
|
|||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class DDIMPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
@ -80,6 +128,14 @@ class DDIMPipeline(metaclass=DummyObject):
|
|||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class DDPMPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
@ -87,6 +143,14 @@ class DDPMPipeline(metaclass=DummyObject):
|
|||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class KarrasVePipeline(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
@ -94,6 +158,14 @@ class KarrasVePipeline(metaclass=DummyObject):
|
|||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class LDMPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
@ -101,6 +173,14 @@ class LDMPipeline(metaclass=DummyObject):
|
|||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class PNDMPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
@ -108,6 +188,14 @@ class PNDMPipeline(metaclass=DummyObject):
|
|||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class ScoreSdeVePipeline(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
@ -115,6 +203,14 @@ class ScoreSdeVePipeline(metaclass=DummyObject):
|
|||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class DDIMScheduler(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
@ -122,6 +218,14 @@ class DDIMScheduler(metaclass=DummyObject):
|
|||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class DDPMScheduler(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
@ -129,6 +233,14 @@ class DDPMScheduler(metaclass=DummyObject):
|
|||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class KarrasVeScheduler(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
@ -136,6 +248,14 @@ class KarrasVeScheduler(metaclass=DummyObject):
|
|||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class PNDMScheduler(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
@ -143,6 +263,14 @@ class PNDMScheduler(metaclass=DummyObject):
|
|||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class SchedulerMixin(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
@ -150,6 +278,14 @@ class SchedulerMixin(metaclass=DummyObject):
|
|||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class ScoreSdeVeScheduler(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
@ -157,9 +293,25 @@ class ScoreSdeVeScheduler(metaclass=DummyObject):
|
|||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class EMAModel(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
|
|
@ -9,3 +9,11 @@ class LMSDiscreteScheduler(metaclass=DummyObject):
|
|||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "scipy"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "scipy"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "scipy"])
|
||||
|
|
|
@ -9,3 +9,11 @@ class StableDiffusionOnnxPipeline(metaclass=DummyObject):
|
|||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers", "onnx"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers", "onnx"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers", "onnx"])
|
||||
|
|
|
@ -10,6 +10,14 @@ class LDMTextToImagePipeline(metaclass=DummyObject):
|
|||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class StableDiffusionImg2ImgPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
@ -17,6 +25,14 @@ class StableDiffusionImg2ImgPipeline(metaclass=DummyObject):
|
|||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class StableDiffusionInpaintPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
@ -24,9 +40,25 @@ class StableDiffusionInpaintPipeline(metaclass=DummyObject):
|
|||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class StableDiffusionPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
|
|
@ -492,6 +492,12 @@ class PipelineFastTests(unittest.TestCase):
|
|||
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
||||
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
|
||||
|
||||
def test_from_pretrained_error_message_uninstalled_packages(self):
|
||||
# TODO(Patrick, Pedro) - need better test here for the future
|
||||
pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-lms-pipe")
|
||||
assert isinstance(pipe, StableDiffusionPipeline)
|
||||
assert isinstance(pipe.scheduler, LMSDiscreteScheduler)
|
||||
|
||||
def test_stable_diffusion_k_lms(self):
|
||||
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
||||
unet = self.dummy_cond_unet
|
||||
|
|
|
@ -38,6 +38,14 @@ class {0}(metaclass=DummyObject):
|
|||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, {1})
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, {1})
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, {1})
|
||||
"""
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue