From 0926dc24180a8931de6081f6de7bc44c1366678c Mon Sep 17 00:00:00 2001 From: Patrick von Platen Date: Wed, 29 Jun 2022 14:28:40 +0000 Subject: [PATCH 1/5] save intermediate grad tts --- @ | 1040 +++++++++++++++++++++++++ src/diffusers/models/resnet.py | 308 ++++++-- src/diffusers/models/unet_grad_tts.py | 24 +- 3 files changed, 1322 insertions(+), 50 deletions(-) create mode 100644 @ diff --git a/@ b/@ new file mode 100644 index 00000000..72548e44 --- /dev/null +++ b/@ @@ -0,0 +1,1040 @@ +import string +from abc import abstractmethod + +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F + + +def avg_pool_nd(dims, *args, **kwargs): + """ + Create a 1D, 2D, or 3D average pooling module. + """ + if dims == 1: + return nn.AvgPool1d(*args, **kwargs) + elif dims == 2: + return nn.AvgPool2d(*args, **kwargs) + elif dims == 3: + return nn.AvgPool3d(*args, **kwargs) + raise ValueError(f"unsupported dimensions: {dims}") + + +def conv_nd(dims, *args, **kwargs): + """ + Create a 1D, 2D, or 3D convolution module. + """ + if dims == 1: + return nn.Conv1d(*args, **kwargs) + elif dims == 2: + return nn.Conv2d(*args, **kwargs) + elif dims == 3: + return nn.Conv3d(*args, **kwargs) + raise ValueError(f"unsupported dimensions: {dims}") + + +def conv_transpose_nd(dims, *args, **kwargs): + """ + Create a 1D, 2D, or 3D convolution module. + """ + if dims == 1: + return nn.ConvTranspose1d(*args, **kwargs) + elif dims == 2: + return nn.ConvTranspose2d(*args, **kwargs) + elif dims == 3: + return nn.ConvTranspose3d(*args, **kwargs) + raise ValueError(f"unsupported dimensions: {dims}") + + +def Normalize(in_channels, num_groups=32, eps=1e-6): + return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=eps, affine=True) + + +def nonlinearity(x, swish=1.0): + # swish + if swish == 1.0: + return F.silu(x) + else: + return x * F.sigmoid(x * float(swish)) + + +class TimestepBlock(nn.Module): + """ + Any module where forward() takes timestep embeddings as a second argument. + """ + + @abstractmethod + def forward(self, x, emb): + """ + Apply the module to `x` given `emb` timestep embeddings. + """ + + +class Upsample(nn.Module): + """ + An upsampling layer with an optional convolution. + + :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is + applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then + upsampling occurs in the inner-two dimensions. + """ + + def __init__(self, channels, use_conv=False, use_conv_transpose=False, dims=2, out_channels=None): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.dims = dims + self.use_conv_transpose = use_conv_transpose + + if use_conv_transpose: + self.conv = conv_transpose_nd(dims, channels, self.out_channels, 4, 2, 1) + elif use_conv: + self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1) + + def forward(self, x): + assert x.shape[1] == self.channels + if self.use_conv_transpose: + return self.conv(x) + + if self.dims == 3: + x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest") + else: + x = F.interpolate(x, scale_factor=2.0, mode="nearest") + + if self.use_conv: + x = self.conv(x) + + return x + + +class Downsample(nn.Module): + """ + A downsampling layer with an optional convolution. + + :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is + applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then + downsampling occurs in the inner-two dimensions. + """ + + def __init__(self, channels, use_conv=False, dims=2, out_channels=None, padding=1, name="conv"): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.dims = dims + self.padding = padding + stride = 2 if dims != 3 else (1, 2, 2) + self.name = name + + if use_conv: + conv = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding) + else: + assert self.channels == self.out_channels + conv = avg_pool_nd(dims, kernel_size=stride, stride=stride) + + if name == "conv": + self.conv = conv + else: + self.op = conv + + def forward(self, x): + assert x.shape[1] == self.channels + if self.use_conv and self.padding == 0 and self.dims == 2: + pad = (0, 1, 0, 1) + x = F.pad(x, pad, mode="constant", value=0) + + if self.name == "conv": + return self.conv(x) + else: + return self.op(x) + + +# class UNetUpsample(nn.Module): +# def __init__(self, in_channels, with_conv): +# super().__init__() +# self.with_conv = with_conv +# if self.with_conv: +# self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) +# +# def forward(self, x): +# x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") +# if self.with_conv: +# x = self.conv(x) +# return x +# +# +# class GlideUpsample(nn.Module): +# """ +# An upsampling layer with an optional convolution. # # :param channels: channels in the inputs and outputs. :param +# use_conv: a bool determining if a convolution is # applied. :param dims: determines if the signal is 1D, 2D, or 3D. If +# 3D, then # upsampling occurs in the inner-two dimensions. #""" +# +# def __init__(self, channels, use_conv, dims=2, out_channels=None): +# super().__init__() +# self.channels = channels +# self.out_channels = out_channels or channels +# self.use_conv = use_conv +# self.dims = dims +# if use_conv: +# self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1) +# +# def forward(self, x): +# assert x.shape[1] == self.channels +# if self.dims == 3: +# x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest") +# else: +# x = F.interpolate(x, scale_factor=2, mode="nearest") +# if self.use_conv: +# x = self.conv(x) +# return x +# +# +# class LDMUpsample(nn.Module): +# """ +# An upsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param # +# use_conv: a bool determining if a convolution is applied. :param dims: determines if the signal is 1D, 2D, or 3D. # If +# 3D, then # upsampling occurs in the inner-two dimensions. #""" +# +# def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): +# super().__init__() +# self.channels = channels +# self.out_channels = out_channels or channels +# self.use_conv = use_conv +# self.dims = dims +# if use_conv: +# self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding) +# +# def forward(self, x): +# assert x.shape[1] == self.channels +# if self.dims == 3: +# x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest") +# else: +# x = F.interpolate(x, scale_factor=2, mode="nearest") +# if self.use_conv: +# x = self.conv(x) +# return x +# +# +# class GradTTSUpsample(torch.nn.Module): +# def __init__(self, dim): +# super(Upsample, self).__init__() +# self.conv = torch.nn.ConvTranspose2d(dim, dim, 4, 2, 1) +# +# def forward(self, x): +# return self.conv(x) +# +# +# TODO (patil-suraj): needs test +# class Upsample1d(nn.Module): +# def __init__(self, dim): +# super().__init__() +# self.conv = nn.ConvTranspose1d(dim, dim, 4, 2, 1) +# +# def forward(self, x): +# return self.conv(x) + + +# RESNETS + +# unet_glide.py & unet_ldm.py +class ResBlock(TimestepBlock): + """ + A residual block that can optionally change the number of channels. + + :param channels: the number of input channels. :param emb_channels: the number of timestep embedding channels. + :param dropout: the rate of dropout. :param out_channels: if specified, the number of out channels. :param + use_conv: if True and out_channels is specified, use a spatial + convolution instead of a smaller 1x1 convolution to change the channels in the skip connection. + :param dims: determines if the signal is 1D, 2D, or 3D. :param use_checkpoint: if True, use gradient checkpointing + on this module. :param up: if True, use this block for upsampling. :param down: if True, use this block for + downsampling. + """ + + def __init__( + self, + channels, + emb_channels, + dropout, + out_channels=None, + use_conv=False, + use_scale_shift_norm=False, + dims=2, + use_checkpoint=False, + up=False, + down=False, + ): + super().__init__() + self.channels = channels + self.emb_channels = emb_channels + self.dropout = dropout + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.use_checkpoint = use_checkpoint + self.use_scale_shift_norm = use_scale_shift_norm + + self.in_layers = nn.Sequential( + normalization(channels, swish=1.0), + nn.Identity(), + conv_nd(dims, channels, self.out_channels, 3, padding=1), + ) + + self.updown = up or down + + if up: + self.h_upd = Upsample(channels, use_conv=False, dims=dims) + self.x_upd = Upsample(channels, use_conv=False, dims=dims) + elif down: + self.h_upd = Downsample(channels, use_conv=False, dims=dims, padding=1, name="op") + self.x_upd = Downsample(channels, use_conv=False, dims=dims, padding=1, name="op") + else: + self.h_upd = self.x_upd = nn.Identity() + + self.emb_layers = nn.Sequential( + nn.SiLU(), + linear( + emb_channels, + 2 * self.out_channels if use_scale_shift_norm else self.out_channels, + ), + ) + self.out_layers = nn.Sequential( + normalization(self.out_channels, swish=0.0 if use_scale_shift_norm else 1.0), + nn.SiLU() if use_scale_shift_norm else nn.Identity(), + nn.Dropout(p=dropout), + zero_module(conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)), + ) + + if self.out_channels == channels: + self.skip_connection = nn.Identity() + elif use_conv: + self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1) + else: + self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) + + def forward(self, x, emb): + """ + Apply the block to a Tensor, conditioned on a timestep embedding. + + :param x: an [N x C x ...] Tensor of features. :param emb: an [N x emb_channels] Tensor of timestep embeddings. + :return: an [N x C x ...] Tensor of outputs. + """ + if self.updown: + in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] + h = in_rest(x) + h = self.h_upd(h) + x = self.x_upd(x) + h = in_conv(h) + else: + h = self.in_layers(x) + emb_out = self.emb_layers(emb).type(h.dtype) + while len(emb_out.shape) < len(h.shape): + emb_out = emb_out[..., None] + if self.use_scale_shift_norm: + out_norm, out_rest = self.out_layers[0], self.out_layers[1:] + scale, shift = torch.chunk(emb_out, 2, dim=1) + h = out_norm(h) * (1 + scale) + shift + h = out_rest(h) + else: + h = h + emb_out + h = self.out_layers(h) + return self.skip_connection(x) + h + + +# unet.py +class OLD_ResnetBlock(nn.Module): + def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512): + super().__init__() + self.in_channels = in_channels + out_channels = in_channels if out_channels is None else out_channels + self.out_channels = out_channels + self.use_conv_shortcut = conv_shortcut + + self.norm1 = Normalize(in_channels) + self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) + self.temb_proj = torch.nn.Linear(temb_channels, out_channels) + self.norm2 = Normalize(out_channels) + self.dropout = torch.nn.Dropout(dropout) + self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) + else: + self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) + + def forward(self, x, temb): + h = x + h = self.norm1(h) + h = nonlinearity(h) + h = self.conv1(h) + + h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] + + h = self.norm2(h) + h = nonlinearity(h) + h = self.dropout(h) + h = self.conv2(h) + + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + x = self.conv_shortcut(x) + else: + x = self.nin_shortcut(x) + + return x + h + + +class ResnetBlock(nn.Module): + def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512, groups=32, pre_norm=True, eps=1e-6): + super().__init__() + self.in_channels = in_channels + out_channels = in_channels if out_channels is None else out_channels + self.out_channels = out_channels + self.use_conv_shortcut = conv_shortcut + self.pre_norm = pre_norm + + if self.pre_norm: + self.norm1 = Normalize(in_channels, num_groups=groups, eps=eps) + else: + self.norm1 = Normalize(out_channels, num_groups=groups, eps=eps) + + self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) + self.temb_proj = torch.nn.Linear(temb_channels, out_channels) + self.norm2 = Normalize(out_channels, num_groups=groups, eps=eps) + self.dropout = torch.nn.Dropout(dropout) + self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) + self.nonlinearity = nonlinearity + + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) + else: + self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) + +# num_groups = 8 +# self.pre_norm = False +# eps = 1e-5 +# self.nonlinearity = Mish() + + def forward(self, x, temb, mask=None): + if mask is None: + mask = torch.ones_like(x) + + h = x + + h = h * mask + if self.pre_norm: + h = self.norm1(h) + h = self.nonlinearity(h) + + h = self.conv1(h) + + if not self.pre_norm: + h = self.norm1(h) + h = self.nonlinearity(h) + h = h * mask + + h = h + self.temb_proj(self.nonlinearity(temb))[:, :, None, None] + + if self.pre_norm: + h = self.norm2(h) + h = self.nonlinearity(h) + + h = h * mask + h = self.dropout(h) + h = self.conv2(h) + + if not self.pre_norm: + h = self.norm2(h) + h = self.nonlinearity(h) + h = h * mask + + x = x * mask + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + x = self.conv_shortcut(x) + else: + x = self.nin_shortcut(x) + + return x + h + + +# unet_grad_tts.py +class ResnetBlockGradTTS(torch.nn.Module): + def __init__(self, dim, dim_out, time_emb_dim, groups=8, eps=1e-6, overwrite=True, conv_shortcut=False, pre_norm=True): + super(ResnetBlockGradTTS, self).__init__() + self.mlp = torch.nn.Sequential(Mish(), torch.nn.Linear(time_emb_dim, dim_out)) + self.pre_norm = pre_norm + + self.block1 = Block(dim, dim_out, groups=groups) + self.block2 = Block(dim_out, dim_out, groups=groups) + if dim != dim_out: + self.res_conv = torch.nn.Conv2d(dim, dim_out, 1) + else: + self.res_conv = torch.nn.Identity() + + self.overwrite = overwrite + if self.overwrite: + in_channels = dim + out_channels = dim_out + temb_channels = time_emb_dim + + # To set via init + self.pre_norm = False + eps = 1e-5 + + self.in_channels = in_channels + out_channels = in_channels if out_channels is None else out_channels + self.out_channels = out_channels + self.use_conv_shortcut = conv_shortcut + + if self.pre_norm: + self.norm1 = Normalize(in_channels, num_groups=groups, eps=eps) + else: + self.norm1 = Normalize(out_channels, num_groups=groups, eps=eps) + + self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) + self.temb_proj = torch.nn.Linear(temb_channels, out_channels) + self.norm2 = Normalize(out_channels, num_groups=groups, eps=eps) + dropout = 0.0 + self.dropout = torch.nn.Dropout(dropout) + self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) + else: + self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) + + self.nonlinearity = Mish() + + self.is_overwritten = False + + def set_weights(self): + self.conv1.weight.data = self.block1.block[0].weight.data + self.conv1.bias.data = self.block1.block[0].bias.data + self.norm1.weight.data = self.block1.block[1].weight.data + self.norm1.bias.data = self.block1.block[1].bias.data + + self.conv2.weight.data = self.block2.block[0].weight.data + self.conv2.bias.data = self.block2.block[0].bias.data + self.norm2.weight.data = self.block2.block[1].weight.data + self.norm2.bias.data = self.block2.block[1].bias.data + + self.temb_proj.weight.data = self.mlp[1].weight.data + self.temb_proj.bias.data = self.mlp[1].bias.data + + if self.in_channels != self.out_channels: + self.nin_shortcut.weight.data = self.res_conv.weight.data + self.nin_shortcut.bias.data = self.res_conv.bias.data + + def forward(self, x, mask, time_emb): + h = self.block1(x, mask) + h += self.mlp(time_emb).unsqueeze(-1).unsqueeze(-1) + h = self.block2(h, mask) + output = h + self.res_conv(x * mask) + + output_2 = self.forward_2(x, time_emb, mask=mask) + return output + + def forward_2(self, x, temb, mask=None): + if not self.is_overwritten: + self.set_weights() + self.is_overwritten = True + + if mask is None: + mask = torch.ones_like(x) + + h = x + + h = h * mask + if self.pre_norm: + h = self.norm1(h) + h = self.nonlinearity(h) + + h = self.conv1(h) + + if not self.pre_norm: + h = self.norm1(h) + h = self.nonlinearity(h) + h = h * mask + + h = h + self.temb_proj(self.nonlinearity(temb))[:, :, None, None] + + h = h * mask + if self.pre_norm: + h = self.norm2(h) + h = self.nonlinearity(h) + + h = self.dropout(h) + h = self.conv2(h) + + if not self.pre_norm: + h = self.norm2(h) + h = self.nonlinearity(h) + h = h * mask + + x = x * mask + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + x = self.conv_shortcut(x) + else: + x = self.nin_shortcut(x) + + return x + h + + +class Block(torch.nn.Module): + def __init__(self, dim, dim_out, groups=8): + super(Block, self).__init__() + self.block = torch.nn.Sequential( + torch.nn.Conv2d(dim, dim_out, 3, padding=1), torch.nn.GroupNorm(groups, dim_out), Mish() + ) + + def forward(self, x, mask): + output = self.block(x * mask) + return output * mask + + +# unet_score_estimation.py +class ResnetBlockBigGANpp(nn.Module): + def __init__( + self, + act, + in_ch, + out_ch=None, + temb_dim=None, + up=False, + down=False, + dropout=0.1, + fir=False, + fir_kernel=(1, 3, 3, 1), + skip_rescale=True, + init_scale=0.0, + ): + super().__init__() + + out_ch = out_ch if out_ch else in_ch + self.GroupNorm_0 = nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6) + self.up = up + self.down = down + self.fir = fir + self.fir_kernel = fir_kernel + + self.Conv_0 = conv3x3(in_ch, out_ch) + if temb_dim is not None: + self.Dense_0 = nn.Linear(temb_dim, out_ch) + self.Dense_0.weight.data = default_init()(self.Dense_0.weight.shape) + nn.init.zeros_(self.Dense_0.bias) + + self.GroupNorm_1 = nn.GroupNorm(num_groups=min(out_ch // 4, 32), num_channels=out_ch, eps=1e-6) + self.Dropout_0 = nn.Dropout(dropout) + self.Conv_1 = conv3x3(out_ch, out_ch, init_scale=init_scale) + if in_ch != out_ch or up or down: + self.Conv_2 = conv1x1(in_ch, out_ch) + + self.skip_rescale = skip_rescale + self.act = act + self.in_ch = in_ch + self.out_ch = out_ch + + def forward(self, x, temb=None): + h = self.act(self.GroupNorm_0(x)) + + if self.up: + if self.fir: + h = upsample_2d(h, self.fir_kernel, factor=2) + x = upsample_2d(x, self.fir_kernel, factor=2) + else: + h = naive_upsample_2d(h, factor=2) + x = naive_upsample_2d(x, factor=2) + elif self.down: + if self.fir: + h = downsample_2d(h, self.fir_kernel, factor=2) + x = downsample_2d(x, self.fir_kernel, factor=2) + else: + h = naive_downsample_2d(h, factor=2) + x = naive_downsample_2d(x, factor=2) + + h = self.Conv_0(h) + # Add bias to each feature map conditioned on the time embedding + if temb is not None: + h += self.Dense_0(self.act(temb))[:, :, None, None] + h = self.act(self.GroupNorm_1(h)) + h = self.Dropout_0(h) + h = self.Conv_1(h) + + if self.in_ch != self.out_ch or self.up or self.down: + x = self.Conv_2(x) + + if not self.skip_rescale: + return x + h + else: + return (x + h) / np.sqrt(2.0) + + +# unet_score_estimation.py +class ResnetBlockDDPMpp(nn.Module): + """ResBlock adapted from DDPM.""" + + def __init__( + self, + act, + in_ch, + out_ch=None, + temb_dim=None, + conv_shortcut=False, + dropout=0.1, + skip_rescale=False, + init_scale=0.0, + ): + super().__init__() + out_ch = out_ch if out_ch else in_ch + self.GroupNorm_0 = nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6) + self.Conv_0 = conv3x3(in_ch, out_ch) + if temb_dim is not None: + self.Dense_0 = nn.Linear(temb_dim, out_ch) + self.Dense_0.weight.data = default_init()(self.Dense_0.weight.data.shape) + nn.init.zeros_(self.Dense_0.bias) + self.GroupNorm_1 = nn.GroupNorm(num_groups=min(out_ch // 4, 32), num_channels=out_ch, eps=1e-6) + self.Dropout_0 = nn.Dropout(dropout) + self.Conv_1 = conv3x3(out_ch, out_ch, init_scale=init_scale) + if in_ch != out_ch: + if conv_shortcut: + self.Conv_2 = conv3x3(in_ch, out_ch) + else: + self.NIN_0 = NIN(in_ch, out_ch) + + self.skip_rescale = skip_rescale + self.act = act + self.out_ch = out_ch + self.conv_shortcut = conv_shortcut + + def forward(self, x, temb=None): + h = self.act(self.GroupNorm_0(x)) + h = self.Conv_0(h) + if temb is not None: + h += self.Dense_0(self.act(temb))[:, :, None, None] + h = self.act(self.GroupNorm_1(h)) + h = self.Dropout_0(h) + h = self.Conv_1(h) + if x.shape[1] != self.out_ch: + if self.conv_shortcut: + x = self.Conv_2(x) + else: + x = self.NIN_0(x) + if not self.skip_rescale: + return x + h + else: + return (x + h) / np.sqrt(2.0) + + +# unet_rl.py +class ResidualTemporalBlock(nn.Module): + def __init__(self, inp_channels, out_channels, embed_dim, horizon, kernel_size=5): + super().__init__() + + self.blocks = nn.ModuleList( + [ + Conv1dBlock(inp_channels, out_channels, kernel_size), + Conv1dBlock(out_channels, out_channels, kernel_size), + ] + ) + + self.time_mlp = nn.Sequential( + nn.Mish(), + nn.Linear(embed_dim, out_channels), + RearrangeDim(), + # Rearrange("batch t -> batch t 1"), + ) + + self.residual_conv = ( + nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity() + ) + + def forward(self, x, t): + """ + x : [ batch_size x inp_channels x horizon ] t : [ batch_size x embed_dim ] returns: out : [ batch_size x + out_channels x horizon ] + """ + out = self.blocks[0](x) + self.time_mlp(t) + out = self.blocks[1](out) + return out + self.residual_conv(x) + + +# HELPER Modules + + +def normalization(channels, swish=0.0): + """ + Make a standard normalization layer, with an optional swish activation. + + :param channels: number of input channels. :return: an nn.Module for normalization. + """ + return GroupNorm32(num_channels=channels, num_groups=32, swish=swish) + + +class GroupNorm32(nn.GroupNorm): + def __init__(self, num_groups, num_channels, swish, eps=1e-5): + super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps) + self.swish = swish + + def forward(self, x): + y = super().forward(x.float()).to(x.dtype) + if self.swish == 1.0: + y = F.silu(y) + elif self.swish: + y = y * F.sigmoid(y * float(self.swish)) + return y + + +def linear(*args, **kwargs): + """ + Create a linear module. + """ + return nn.Linear(*args, **kwargs) + + +def zero_module(module): + """ + Zero out the parameters of a module and return it. + """ + for p in module.parameters(): + p.detach().zero_() + return module + + +class Mish(torch.nn.Module): + def forward(self, x): + return x * torch.tanh(torch.nn.functional.softplus(x)) + + +class Conv1dBlock(nn.Module): + """ + Conv1d --> GroupNorm --> Mish + """ + + def __init__(self, inp_channels, out_channels, kernel_size, n_groups=8): + super().__init__() + + self.block = nn.Sequential( + nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2), + RearrangeDim(), + # Rearrange("batch channels horizon -> batch channels 1 horizon"), + nn.GroupNorm(n_groups, out_channels), + RearrangeDim(), + # Rearrange("batch channels 1 horizon -> batch channels horizon"), + nn.Mish(), + ) + + def forward(self, x): + return self.block(x) + + +class RearrangeDim(nn.Module): + def __init__(self): + super().__init__() + + def forward(self, tensor): + if len(tensor.shape) == 2: + return tensor[:, :, None] + if len(tensor.shape) == 3: + return tensor[:, :, None, :] + elif len(tensor.shape) == 4: + return tensor[:, :, 0, :] + else: + raise ValueError(f"`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.") + + +def conv1x1(in_planes, out_planes, stride=1, bias=True, init_scale=1.0, padding=0): + """1x1 convolution with DDPM initialization.""" + conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, padding=padding, bias=bias) + conv.weight.data = default_init(init_scale)(conv.weight.data.shape) + nn.init.zeros_(conv.bias) + return conv + + +def conv3x3(in_planes, out_planes, stride=1, bias=True, dilation=1, init_scale=1.0, padding=1): + """3x3 convolution with DDPM initialization.""" + conv = nn.Conv2d( + in_planes, out_planes, kernel_size=3, stride=stride, padding=padding, dilation=dilation, bias=bias + ) + conv.weight.data = default_init(init_scale)(conv.weight.data.shape) + nn.init.zeros_(conv.bias) + return conv + + +def default_init(scale=1.0): + """The same initialization used in DDPM.""" + scale = 1e-10 if scale == 0 else scale + return variance_scaling(scale, "fan_avg", "uniform") + + +def variance_scaling(scale, mode, distribution, in_axis=1, out_axis=0, dtype=torch.float32, device="cpu"): + """Ported from JAX.""" + + def _compute_fans(shape, in_axis=1, out_axis=0): + receptive_field_size = np.prod(shape) / shape[in_axis] / shape[out_axis] + fan_in = shape[in_axis] * receptive_field_size + fan_out = shape[out_axis] * receptive_field_size + return fan_in, fan_out + + def init(shape, dtype=dtype, device=device): + fan_in, fan_out = _compute_fans(shape, in_axis, out_axis) + if mode == "fan_in": + denominator = fan_in + elif mode == "fan_out": + denominator = fan_out + elif mode == "fan_avg": + denominator = (fan_in + fan_out) / 2 + else: + raise ValueError("invalid mode for variance scaling initializer: {}".format(mode)) + variance = scale / denominator + if distribution == "normal": + return torch.randn(*shape, dtype=dtype, device=device) * np.sqrt(variance) + elif distribution == "uniform": + return (torch.rand(*shape, dtype=dtype, device=device) * 2.0 - 1.0) * np.sqrt(3 * variance) + else: + raise ValueError("invalid distribution for variance scaling initializer") + + return init + + +def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): + return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]) + + +def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1): + _, channel, in_h, in_w = input.shape + input = input.reshape(-1, in_h, in_w, 1) + + _, in_h, in_w, minor = input.shape + kernel_h, kernel_w = kernel.shape + + out = input.view(-1, in_h, 1, in_w, 1, minor) + out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1]) + out = out.view(-1, in_h * up_y, in_w * up_x, minor) + + out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) + out = out[ + :, + max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0), + max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0), + :, + ] + + out = out.permute(0, 3, 1, 2) + out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) + w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) + out = F.conv2d(out, w) + out = out.reshape( + -1, + minor, + in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, + in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, + ) + out = out.permute(0, 2, 3, 1) + out = out[:, ::down_y, ::down_x, :] + + out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 + out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 + + return out.view(-1, channel, out_h, out_w) + + +def upsample_2d(x, k=None, factor=2, gain=1): + r"""Upsample a batch of 2D images with the given filter. + + Args: + Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given + filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified + `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is a: + multiple of the upsampling factor. + x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, + C]`. + k: FIR filter of the shape `[firH, firW]` or `[firN]` + (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling. + factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). + + Returns: + Tensor of the shape `[N, C, H * factor, W * factor]` + """ + assert isinstance(factor, int) and factor >= 1 + if k is None: + k = [1] * factor + k = _setup_kernel(k) * (gain * (factor**2)) + p = k.shape[0] - factor + return upfirdn2d(x, torch.tensor(k, device=x.device), up=factor, pad=((p + 1) // 2 + factor - 1, p // 2)) + + +def downsample_2d(x, k=None, factor=2, gain=1): + r"""Downsample a batch of 2D images with the given filter. + + Args: + Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the + given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the + specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its + shape is a multiple of the downsampling factor. + x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, + C]`. + k: FIR filter of the shape `[firH, firW]` or `[firN]` + (separable). The default is `[1] * factor`, which corresponds to average pooling. + factor: Integer downsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). + + Returns: + Tensor of the shape `[N, C, H // factor, W // factor]` + """ + + assert isinstance(factor, int) and factor >= 1 + if k is None: + k = [1] * factor + k = _setup_kernel(k) * gain + p = k.shape[0] - factor + return upfirdn2d(x, torch.tensor(k, device=x.device), down=factor, pad=((p + 1) // 2, p // 2)) + + +def naive_upsample_2d(x, factor=2): + _N, C, H, W = x.shape + x = torch.reshape(x, (-1, C, H, 1, W, 1)) + x = x.repeat(1, 1, 1, factor, 1, factor) + return torch.reshape(x, (-1, C, H * factor, W * factor)) + + +def naive_downsample_2d(x, factor=2): + _N, C, H, W = x.shape + x = torch.reshape(x, (-1, C, H // factor, factor, W // factor, factor)) + return torch.mean(x, dim=(3, 5)) + + +class NIN(nn.Module): + def __init__(self, in_dim, num_units, init_scale=0.1): + super().__init__() + self.W = nn.Parameter(default_init(scale=init_scale)((in_dim, num_units)), requires_grad=True) + self.b = nn.Parameter(torch.zeros(num_units), requires_grad=True) + + def forward(self, x): + x = x.permute(0, 2, 3, 1) + y = contract_inner(x, self.W) + self.b + return y.permute(0, 3, 1, 2) + + +def _setup_kernel(k): + k = np.asarray(k, dtype=np.float32) + if k.ndim == 1: + k = np.outer(k, k) + k /= np.sum(k) + assert k.ndim == 2 + assert k.shape[0] == k.shape[1] + return k + + +def contract_inner(x, y): + """tensordot(x, y, 1).""" + x_chars = list(string.ascii_lowercase[: len(x.shape)]) + y_chars = list(string.ascii_lowercase[len(x.shape) : len(y.shape) + len(x.shape)]) + y_chars[0] = x_chars[-1] # first axis of y and last of x get summed + out_chars = x_chars[:-1] + y_chars[1:] + return _einsum(x_chars, y_chars, out_chars, x, y) + + +def _einsum(a, b, c, x, y): + einsum_str = "{},{}->{}".format("".join(a), "".join(b), "".join(c)) + return torch.einsum(einsum_str, x, y) diff --git a/src/diffusers/models/resnet.py b/src/diffusers/models/resnet.py index 0b526290..cd0925cb 100644 --- a/src/diffusers/models/resnet.py +++ b/src/diffusers/models/resnet.py @@ -46,8 +46,8 @@ def conv_transpose_nd(dims, *args, **kwargs): raise ValueError(f"unsupported dimensions: {dims}") -def Normalize(in_channels): - return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) +def Normalize(in_channels, num_groups=32, eps=1e-6): + return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=eps, affine=True) def nonlinearity(x, swish=1.0): @@ -341,7 +341,7 @@ class ResBlock(TimestepBlock): # unet.py -class ResnetBlock(nn.Module): +class OLD_ResnetBlock(nn.Module): def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512): super().__init__() self.in_channels = in_channels @@ -383,11 +383,129 @@ class ResnetBlock(nn.Module): return x + h +class ResnetBlock(nn.Module): + def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout=0.0, temb_channels=512, groups=32, pre_norm=True, eps=1e-6, non_linearity="swish", overwrite_for_grad_tts=False): + super().__init__() + self.pre_norm = pre_norm + self.in_channels = in_channels + out_channels = in_channels if out_channels is None else out_channels + self.out_channels = out_channels + self.use_conv_shortcut = conv_shortcut + + if self.pre_norm: + self.norm1 = Normalize(in_channels, num_groups=groups, eps=eps) + else: + self.norm1 = Normalize(out_channels, num_groups=groups, eps=eps) + + self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) + self.temb_proj = torch.nn.Linear(temb_channels, out_channels) + self.norm2 = Normalize(out_channels, num_groups=groups, eps=eps) + self.dropout = torch.nn.Dropout(dropout) + self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) + if non_linearity == "swish": + self.nonlinearity = nonlinearity + elif non_linearity == "mish": + self.nonlinearity = Mish() + + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) + else: + self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) + + self.is_overwritten = False + self.overwrite_for_grad_tts = overwrite_for_grad_tts + if self.overwrite_for_grad_tts: + dim = in_channels + dim_out = out_channels + time_emb_dim = temb_channels + self.mlp = torch.nn.Sequential(Mish(), torch.nn.Linear(time_emb_dim, dim_out)) + self.pre_norm = pre_norm + + self.block1 = Block(dim, dim_out, groups=groups) + self.block2 = Block(dim_out, dim_out, groups=groups) + if dim != dim_out: + self.res_conv = torch.nn.Conv2d(dim, dim_out, 1) + else: + self.res_conv = torch.nn.Identity() + +# num_groups = 8 +# self.pre_norm = False +# eps = 1e-5 +# non_linearity = "mish" + + def set_weights_grad_tts(self): + self.conv1.weight.data = self.block1.block[0].weight.data + self.conv1.bias.data = self.block1.block[0].bias.data + self.norm1.weight.data = self.block1.block[1].weight.data + self.norm1.bias.data = self.block1.block[1].bias.data + + self.conv2.weight.data = self.block2.block[0].weight.data + self.conv2.bias.data = self.block2.block[0].bias.data + self.norm2.weight.data = self.block2.block[1].weight.data + self.norm2.bias.data = self.block2.block[1].bias.data + + self.temb_proj.weight.data = self.mlp[1].weight.data + self.temb_proj.bias.data = self.mlp[1].bias.data + + if self.in_channels != self.out_channels: + self.nin_shortcut.weight.data = self.res_conv.weight.data + self.nin_shortcut.bias.data = self.res_conv.bias.data + + def forward(self, x, temb, mask=None): + if not self.pre_norm: + temp = mask + mask = temb + temb = temp + + if self.overwrite_for_grad_tts and not self.is_overwritten: + self.set_weights_grad_tts() + self.is_overwritten = True + + h = x + h = h * mask if mask is not None else h + if self.pre_norm: + h = self.norm1(h) + h = self.nonlinearity(h) + + h = self.conv1(h) + + if not self.pre_norm: + h = self.norm1(h) + h = self.nonlinearity(h) + h = h * mask if mask is not None else h + + h = h + self.temb_proj(self.nonlinearity(temb))[:, :, None, None] + + h = h * mask if mask is not None else h + if self.pre_norm: + h = self.norm2(h) + h = self.nonlinearity(h) + + h = self.dropout(h) + h = self.conv2(h) + + if not self.pre_norm: + h = self.norm2(h) + h = self.nonlinearity(h) + h = h * mask if mask is not None else h + + x = x * mask if mask is not None else x + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + x = self.conv_shortcut(x) + else: + x = self.nin_shortcut(x) + + return x + h + + # unet_grad_tts.py class ResnetBlockGradTTS(torch.nn.Module): - def __init__(self, dim, dim_out, time_emb_dim, groups=8): + def __init__(self, dim, dim_out, time_emb_dim, groups=8, eps=1e-6, overwrite=True, conv_shortcut=False, pre_norm=True): super(ResnetBlockGradTTS, self).__init__() self.mlp = torch.nn.Sequential(Mish(), torch.nn.Linear(time_emb_dim, dim_out)) + self.pre_norm = pre_norm self.block1 = Block(dim, dim_out, groups=groups) self.block2 = Block(dim_out, dim_out, groups=groups) @@ -396,45 +514,126 @@ class ResnetBlockGradTTS(torch.nn.Module): else: self.res_conv = torch.nn.Identity() + self.overwrite = overwrite + if self.overwrite: + in_channels = dim + out_channels = dim_out + temb_channels = time_emb_dim + + # To set via init + self.pre_norm = False + eps = 1e-5 + + self.in_channels = in_channels + out_channels = in_channels if out_channels is None else out_channels + self.out_channels = out_channels + self.use_conv_shortcut = conv_shortcut + + if self.pre_norm: + self.norm1 = Normalize(in_channels, num_groups=groups, eps=eps) + else: + self.norm1 = Normalize(out_channels, num_groups=groups, eps=eps) + + self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) + self.temb_proj = torch.nn.Linear(temb_channels, out_channels) + self.norm2 = Normalize(out_channels, num_groups=groups, eps=eps) + dropout = 0.0 + self.dropout = torch.nn.Dropout(dropout) + self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) + else: + self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) + + self.nonlinearity = Mish() + + self.is_overwritten = False + + def set_weights(self): + self.conv1.weight.data = self.block1.block[0].weight.data + self.conv1.bias.data = self.block1.block[0].bias.data + self.norm1.weight.data = self.block1.block[1].weight.data + self.norm1.bias.data = self.block1.block[1].bias.data + + self.conv2.weight.data = self.block2.block[0].weight.data + self.conv2.bias.data = self.block2.block[0].bias.data + self.norm2.weight.data = self.block2.block[1].weight.data + self.norm2.bias.data = self.block2.block[1].bias.data + + self.temb_proj.weight.data = self.mlp[1].weight.data + self.temb_proj.bias.data = self.mlp[1].bias.data + + if self.in_channels != self.out_channels: + self.nin_shortcut.weight.data = self.res_conv.weight.data + self.nin_shortcut.bias.data = self.res_conv.bias.data + def forward(self, x, mask, time_emb): h = self.block1(x, mask) h += self.mlp(time_emb).unsqueeze(-1).unsqueeze(-1) h = self.block2(h, mask) output = h + self.res_conv(x * mask) + + output = self.forward_2(x, time_emb, mask=mask) return output + def forward_2(self, x, temb, mask=None): + if not self.is_overwritten: + self.set_weights() + self.is_overwritten = True -# unet_rl.py -class ResidualTemporalBlock(nn.Module): - def __init__(self, inp_channels, out_channels, embed_dim, horizon, kernel_size=5): - super().__init__() + if mask is None: + mask = torch.ones_like(x) - self.blocks = nn.ModuleList( - [ - Conv1dBlock(inp_channels, out_channels, kernel_size), - Conv1dBlock(out_channels, out_channels, kernel_size), - ] + h = x + + h = h * mask + if self.pre_norm: + h = self.norm1(h) + h = self.nonlinearity(h) + + h = self.conv1(h) + + if not self.pre_norm: + h = self.norm1(h) + h = self.nonlinearity(h) + h = h * mask + + h = h + self.temb_proj(self.nonlinearity(temb))[:, :, None, None] + + h = h * mask + if self.pre_norm: + h = self.norm2(h) + h = self.nonlinearity(h) + + h = self.dropout(h) + h = self.conv2(h) + + if not self.pre_norm: + h = self.norm2(h) + h = self.nonlinearity(h) + h = h * mask + + x = x * mask + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + x = self.conv_shortcut(x) + else: + x = self.nin_shortcut(x) + + return x + h + + +class Block(torch.nn.Module): + def __init__(self, dim, dim_out, groups=8): + super(Block, self).__init__() + self.block = torch.nn.Sequential( + torch.nn.Conv2d(dim, dim_out, 3, padding=1), torch.nn.GroupNorm(groups, dim_out), Mish() ) - self.time_mlp = nn.Sequential( - nn.Mish(), - nn.Linear(embed_dim, out_channels), - RearrangeDim(), - # Rearrange("batch t -> batch t 1"), - ) - - self.residual_conv = ( - nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity() - ) - - def forward(self, x, t): - """ - x : [ batch_size x inp_channels x horizon ] t : [ batch_size x embed_dim ] returns: out : [ batch_size x - out_channels x horizon ] - """ - out = self.blocks[0](x) + self.time_mlp(t) - out = self.blocks[1](out) - return out + self.residual_conv(x) + def forward(self, x, mask): + output = self.block(x * mask) + return output * mask # unet_score_estimation.py @@ -570,6 +769,39 @@ class ResnetBlockDDPMpp(nn.Module): return (x + h) / np.sqrt(2.0) +# unet_rl.py +class ResidualTemporalBlock(nn.Module): + def __init__(self, inp_channels, out_channels, embed_dim, horizon, kernel_size=5): + super().__init__() + + self.blocks = nn.ModuleList( + [ + Conv1dBlock(inp_channels, out_channels, kernel_size), + Conv1dBlock(out_channels, out_channels, kernel_size), + ] + ) + + self.time_mlp = nn.Sequential( + nn.Mish(), + nn.Linear(embed_dim, out_channels), + RearrangeDim(), + # Rearrange("batch t -> batch t 1"), + ) + + self.residual_conv = ( + nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity() + ) + + def forward(self, x, t): + """ + x : [ batch_size x inp_channels x horizon ] t : [ batch_size x embed_dim ] returns: out : [ batch_size x + out_channels x horizon ] + """ + out = self.blocks[0](x) + self.time_mlp(t) + out = self.blocks[1](out) + return out + self.residual_conv(x) + + # HELPER Modules @@ -617,18 +849,6 @@ class Mish(torch.nn.Module): return x * torch.tanh(torch.nn.functional.softplus(x)) -class Block(torch.nn.Module): - def __init__(self, dim, dim_out, groups=8): - super(Block, self).__init__() - self.block = torch.nn.Sequential( - torch.nn.Conv2d(dim, dim_out, 3, padding=1), torch.nn.GroupNorm(groups, dim_out), Mish() - ) - - def forward(self, x, mask): - output = self.block(x * mask) - return output * mask - - class Conv1dBlock(nn.Module): """ Conv1d --> GroupNorm --> Mish diff --git a/src/diffusers/models/unet_grad_tts.py b/src/diffusers/models/unet_grad_tts.py index e6dabe6d..432199cc 100644 --- a/src/diffusers/models/unet_grad_tts.py +++ b/src/diffusers/models/unet_grad_tts.py @@ -5,6 +5,7 @@ from ..modeling_utils import ModelMixin from .attention import LinearAttention from .embeddings import get_timestep_embedding from .resnet import Downsample +from .resnet import ResnetBlock as ResnetBlockNew from .resnet import ResnetBlockGradTTS as ResnetBlock from .resnet import Upsample @@ -81,13 +82,20 @@ class UNetGradTTSModel(ModelMixin, ConfigMixin): self.ups = torch.nn.ModuleList([]) num_resolutions = len(in_out) +# num_groups = 8 +# self.pre_norm = False +# eps = 1e-5 +# non_linearity = "mish" + for ind, (dim_in, dim_out) in enumerate(in_out): is_last = ind >= (num_resolutions - 1) self.downs.append( torch.nn.ModuleList( [ - ResnetBlock(dim_in, dim_out, time_emb_dim=dim), - ResnetBlock(dim_out, dim_out, time_emb_dim=dim), +# ResnetBlock(dim_in, dim_out, time_emb_dim=dim), +# ResnetBlock(dim_out, dim_out, time_emb_dim=dim), + ResnetBlockNew(in_channels=dim_in, out_channels=dim_out, temb_channels=dim, groups=8, pre_norm=False, eps=1e-5, non_linearity="mish", overwrite_for_grad_tts=True), + ResnetBlockNew(in_channels=dim_out, out_channels=dim_out, temb_channels=dim, groups=8, pre_norm=False, eps=1e-5, non_linearity="mish", overwrite_for_grad_tts=True), Residual(Rezero(LinearAttention(dim_out))), Downsample(dim_out, use_conv=True, padding=1) if not is_last else torch.nn.Identity(), ] @@ -95,16 +103,20 @@ class UNetGradTTSModel(ModelMixin, ConfigMixin): ) mid_dim = dims[-1] - self.mid_block1 = ResnetBlock(mid_dim, mid_dim, time_emb_dim=dim) +# self.mid_block1 = ResnetBlock(mid_dim, mid_dim, time_emb_dim=dim) +# self.mid_block2 = ResnetBlock(mid_dim, mid_dim, time_emb_dim=dim) + self.mid_block1 = ResnetBlockNew(in_channels=mid_dim, out_channels=mid_dim, temb_channels=dim, groups=8, pre_norm=False, eps=1e-5, non_linearity="mish", overwrite_for_grad_tts=True) self.mid_attn = Residual(Rezero(LinearAttention(mid_dim))) - self.mid_block2 = ResnetBlock(mid_dim, mid_dim, time_emb_dim=dim) + self.mid_block2 = ResnetBlockNew(in_channels=mid_dim, out_channels=mid_dim, temb_channels=dim, groups=8, pre_norm=False, eps=1e-5, non_linearity="mish", overwrite_for_grad_tts=True) for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])): self.ups.append( torch.nn.ModuleList( [ - ResnetBlock(dim_out * 2, dim_in, time_emb_dim=dim), - ResnetBlock(dim_in, dim_in, time_emb_dim=dim), +# ResnetBlock(dim_out * 2, dim_in, time_emb_dim=dim), +# ResnetBlock(dim_in, dim_in, time_emb_dim=dim), + ResnetBlockNew(in_channels=dim_out * 2, out_channels=dim_in, temb_channels=dim, groups=8, pre_norm=False, eps=1e-5, non_linearity="mish", overwrite_for_grad_tts=True), + ResnetBlockNew(in_channels=dim_in, out_channels=dim_in, temb_channels=dim, groups=8, pre_norm=False, eps=1e-5, non_linearity="mish", overwrite_for_grad_tts=True), Residual(Rezero(LinearAttention(dim_in))), Upsample(dim_in, use_conv_transpose=True), ] From 4e125f72ab7670b9041618f949871f016c62a904 Mon Sep 17 00:00:00 2001 From: Patrick von Platen Date: Wed, 29 Jun 2022 14:28:51 +0000 Subject: [PATCH 2/5] Remove bogus file --- @ | 1040 ------------------------------------------------------------- 1 file changed, 1040 deletions(-) delete mode 100644 @ diff --git a/@ b/@ deleted file mode 100644 index 72548e44..00000000 --- a/@ +++ /dev/null @@ -1,1040 +0,0 @@ -import string -from abc import abstractmethod - -import numpy as np -import torch -import torch.nn as nn -import torch.nn.functional as F - - -def avg_pool_nd(dims, *args, **kwargs): - """ - Create a 1D, 2D, or 3D average pooling module. - """ - if dims == 1: - return nn.AvgPool1d(*args, **kwargs) - elif dims == 2: - return nn.AvgPool2d(*args, **kwargs) - elif dims == 3: - return nn.AvgPool3d(*args, **kwargs) - raise ValueError(f"unsupported dimensions: {dims}") - - -def conv_nd(dims, *args, **kwargs): - """ - Create a 1D, 2D, or 3D convolution module. - """ - if dims == 1: - return nn.Conv1d(*args, **kwargs) - elif dims == 2: - return nn.Conv2d(*args, **kwargs) - elif dims == 3: - return nn.Conv3d(*args, **kwargs) - raise ValueError(f"unsupported dimensions: {dims}") - - -def conv_transpose_nd(dims, *args, **kwargs): - """ - Create a 1D, 2D, or 3D convolution module. - """ - if dims == 1: - return nn.ConvTranspose1d(*args, **kwargs) - elif dims == 2: - return nn.ConvTranspose2d(*args, **kwargs) - elif dims == 3: - return nn.ConvTranspose3d(*args, **kwargs) - raise ValueError(f"unsupported dimensions: {dims}") - - -def Normalize(in_channels, num_groups=32, eps=1e-6): - return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=eps, affine=True) - - -def nonlinearity(x, swish=1.0): - # swish - if swish == 1.0: - return F.silu(x) - else: - return x * F.sigmoid(x * float(swish)) - - -class TimestepBlock(nn.Module): - """ - Any module where forward() takes timestep embeddings as a second argument. - """ - - @abstractmethod - def forward(self, x, emb): - """ - Apply the module to `x` given `emb` timestep embeddings. - """ - - -class Upsample(nn.Module): - """ - An upsampling layer with an optional convolution. - - :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is - applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then - upsampling occurs in the inner-two dimensions. - """ - - def __init__(self, channels, use_conv=False, use_conv_transpose=False, dims=2, out_channels=None): - super().__init__() - self.channels = channels - self.out_channels = out_channels or channels - self.use_conv = use_conv - self.dims = dims - self.use_conv_transpose = use_conv_transpose - - if use_conv_transpose: - self.conv = conv_transpose_nd(dims, channels, self.out_channels, 4, 2, 1) - elif use_conv: - self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1) - - def forward(self, x): - assert x.shape[1] == self.channels - if self.use_conv_transpose: - return self.conv(x) - - if self.dims == 3: - x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest") - else: - x = F.interpolate(x, scale_factor=2.0, mode="nearest") - - if self.use_conv: - x = self.conv(x) - - return x - - -class Downsample(nn.Module): - """ - A downsampling layer with an optional convolution. - - :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is - applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then - downsampling occurs in the inner-two dimensions. - """ - - def __init__(self, channels, use_conv=False, dims=2, out_channels=None, padding=1, name="conv"): - super().__init__() - self.channels = channels - self.out_channels = out_channels or channels - self.use_conv = use_conv - self.dims = dims - self.padding = padding - stride = 2 if dims != 3 else (1, 2, 2) - self.name = name - - if use_conv: - conv = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding) - else: - assert self.channels == self.out_channels - conv = avg_pool_nd(dims, kernel_size=stride, stride=stride) - - if name == "conv": - self.conv = conv - else: - self.op = conv - - def forward(self, x): - assert x.shape[1] == self.channels - if self.use_conv and self.padding == 0 and self.dims == 2: - pad = (0, 1, 0, 1) - x = F.pad(x, pad, mode="constant", value=0) - - if self.name == "conv": - return self.conv(x) - else: - return self.op(x) - - -# class UNetUpsample(nn.Module): -# def __init__(self, in_channels, with_conv): -# super().__init__() -# self.with_conv = with_conv -# if self.with_conv: -# self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) -# -# def forward(self, x): -# x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") -# if self.with_conv: -# x = self.conv(x) -# return x -# -# -# class GlideUpsample(nn.Module): -# """ -# An upsampling layer with an optional convolution. # # :param channels: channels in the inputs and outputs. :param -# use_conv: a bool determining if a convolution is # applied. :param dims: determines if the signal is 1D, 2D, or 3D. If -# 3D, then # upsampling occurs in the inner-two dimensions. #""" -# -# def __init__(self, channels, use_conv, dims=2, out_channels=None): -# super().__init__() -# self.channels = channels -# self.out_channels = out_channels or channels -# self.use_conv = use_conv -# self.dims = dims -# if use_conv: -# self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1) -# -# def forward(self, x): -# assert x.shape[1] == self.channels -# if self.dims == 3: -# x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest") -# else: -# x = F.interpolate(x, scale_factor=2, mode="nearest") -# if self.use_conv: -# x = self.conv(x) -# return x -# -# -# class LDMUpsample(nn.Module): -# """ -# An upsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param # -# use_conv: a bool determining if a convolution is applied. :param dims: determines if the signal is 1D, 2D, or 3D. # If -# 3D, then # upsampling occurs in the inner-two dimensions. #""" -# -# def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): -# super().__init__() -# self.channels = channels -# self.out_channels = out_channels or channels -# self.use_conv = use_conv -# self.dims = dims -# if use_conv: -# self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding) -# -# def forward(self, x): -# assert x.shape[1] == self.channels -# if self.dims == 3: -# x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest") -# else: -# x = F.interpolate(x, scale_factor=2, mode="nearest") -# if self.use_conv: -# x = self.conv(x) -# return x -# -# -# class GradTTSUpsample(torch.nn.Module): -# def __init__(self, dim): -# super(Upsample, self).__init__() -# self.conv = torch.nn.ConvTranspose2d(dim, dim, 4, 2, 1) -# -# def forward(self, x): -# return self.conv(x) -# -# -# TODO (patil-suraj): needs test -# class Upsample1d(nn.Module): -# def __init__(self, dim): -# super().__init__() -# self.conv = nn.ConvTranspose1d(dim, dim, 4, 2, 1) -# -# def forward(self, x): -# return self.conv(x) - - -# RESNETS - -# unet_glide.py & unet_ldm.py -class ResBlock(TimestepBlock): - """ - A residual block that can optionally change the number of channels. - - :param channels: the number of input channels. :param emb_channels: the number of timestep embedding channels. - :param dropout: the rate of dropout. :param out_channels: if specified, the number of out channels. :param - use_conv: if True and out_channels is specified, use a spatial - convolution instead of a smaller 1x1 convolution to change the channels in the skip connection. - :param dims: determines if the signal is 1D, 2D, or 3D. :param use_checkpoint: if True, use gradient checkpointing - on this module. :param up: if True, use this block for upsampling. :param down: if True, use this block for - downsampling. - """ - - def __init__( - self, - channels, - emb_channels, - dropout, - out_channels=None, - use_conv=False, - use_scale_shift_norm=False, - dims=2, - use_checkpoint=False, - up=False, - down=False, - ): - super().__init__() - self.channels = channels - self.emb_channels = emb_channels - self.dropout = dropout - self.out_channels = out_channels or channels - self.use_conv = use_conv - self.use_checkpoint = use_checkpoint - self.use_scale_shift_norm = use_scale_shift_norm - - self.in_layers = nn.Sequential( - normalization(channels, swish=1.0), - nn.Identity(), - conv_nd(dims, channels, self.out_channels, 3, padding=1), - ) - - self.updown = up or down - - if up: - self.h_upd = Upsample(channels, use_conv=False, dims=dims) - self.x_upd = Upsample(channels, use_conv=False, dims=dims) - elif down: - self.h_upd = Downsample(channels, use_conv=False, dims=dims, padding=1, name="op") - self.x_upd = Downsample(channels, use_conv=False, dims=dims, padding=1, name="op") - else: - self.h_upd = self.x_upd = nn.Identity() - - self.emb_layers = nn.Sequential( - nn.SiLU(), - linear( - emb_channels, - 2 * self.out_channels if use_scale_shift_norm else self.out_channels, - ), - ) - self.out_layers = nn.Sequential( - normalization(self.out_channels, swish=0.0 if use_scale_shift_norm else 1.0), - nn.SiLU() if use_scale_shift_norm else nn.Identity(), - nn.Dropout(p=dropout), - zero_module(conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)), - ) - - if self.out_channels == channels: - self.skip_connection = nn.Identity() - elif use_conv: - self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1) - else: - self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) - - def forward(self, x, emb): - """ - Apply the block to a Tensor, conditioned on a timestep embedding. - - :param x: an [N x C x ...] Tensor of features. :param emb: an [N x emb_channels] Tensor of timestep embeddings. - :return: an [N x C x ...] Tensor of outputs. - """ - if self.updown: - in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] - h = in_rest(x) - h = self.h_upd(h) - x = self.x_upd(x) - h = in_conv(h) - else: - h = self.in_layers(x) - emb_out = self.emb_layers(emb).type(h.dtype) - while len(emb_out.shape) < len(h.shape): - emb_out = emb_out[..., None] - if self.use_scale_shift_norm: - out_norm, out_rest = self.out_layers[0], self.out_layers[1:] - scale, shift = torch.chunk(emb_out, 2, dim=1) - h = out_norm(h) * (1 + scale) + shift - h = out_rest(h) - else: - h = h + emb_out - h = self.out_layers(h) - return self.skip_connection(x) + h - - -# unet.py -class OLD_ResnetBlock(nn.Module): - def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512): - super().__init__() - self.in_channels = in_channels - out_channels = in_channels if out_channels is None else out_channels - self.out_channels = out_channels - self.use_conv_shortcut = conv_shortcut - - self.norm1 = Normalize(in_channels) - self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) - self.temb_proj = torch.nn.Linear(temb_channels, out_channels) - self.norm2 = Normalize(out_channels) - self.dropout = torch.nn.Dropout(dropout) - self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) - if self.in_channels != self.out_channels: - if self.use_conv_shortcut: - self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) - else: - self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) - - def forward(self, x, temb): - h = x - h = self.norm1(h) - h = nonlinearity(h) - h = self.conv1(h) - - h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] - - h = self.norm2(h) - h = nonlinearity(h) - h = self.dropout(h) - h = self.conv2(h) - - if self.in_channels != self.out_channels: - if self.use_conv_shortcut: - x = self.conv_shortcut(x) - else: - x = self.nin_shortcut(x) - - return x + h - - -class ResnetBlock(nn.Module): - def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512, groups=32, pre_norm=True, eps=1e-6): - super().__init__() - self.in_channels = in_channels - out_channels = in_channels if out_channels is None else out_channels - self.out_channels = out_channels - self.use_conv_shortcut = conv_shortcut - self.pre_norm = pre_norm - - if self.pre_norm: - self.norm1 = Normalize(in_channels, num_groups=groups, eps=eps) - else: - self.norm1 = Normalize(out_channels, num_groups=groups, eps=eps) - - self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) - self.temb_proj = torch.nn.Linear(temb_channels, out_channels) - self.norm2 = Normalize(out_channels, num_groups=groups, eps=eps) - self.dropout = torch.nn.Dropout(dropout) - self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) - self.nonlinearity = nonlinearity - - if self.in_channels != self.out_channels: - if self.use_conv_shortcut: - self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) - else: - self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) - -# num_groups = 8 -# self.pre_norm = False -# eps = 1e-5 -# self.nonlinearity = Mish() - - def forward(self, x, temb, mask=None): - if mask is None: - mask = torch.ones_like(x) - - h = x - - h = h * mask - if self.pre_norm: - h = self.norm1(h) - h = self.nonlinearity(h) - - h = self.conv1(h) - - if not self.pre_norm: - h = self.norm1(h) - h = self.nonlinearity(h) - h = h * mask - - h = h + self.temb_proj(self.nonlinearity(temb))[:, :, None, None] - - if self.pre_norm: - h = self.norm2(h) - h = self.nonlinearity(h) - - h = h * mask - h = self.dropout(h) - h = self.conv2(h) - - if not self.pre_norm: - h = self.norm2(h) - h = self.nonlinearity(h) - h = h * mask - - x = x * mask - if self.in_channels != self.out_channels: - if self.use_conv_shortcut: - x = self.conv_shortcut(x) - else: - x = self.nin_shortcut(x) - - return x + h - - -# unet_grad_tts.py -class ResnetBlockGradTTS(torch.nn.Module): - def __init__(self, dim, dim_out, time_emb_dim, groups=8, eps=1e-6, overwrite=True, conv_shortcut=False, pre_norm=True): - super(ResnetBlockGradTTS, self).__init__() - self.mlp = torch.nn.Sequential(Mish(), torch.nn.Linear(time_emb_dim, dim_out)) - self.pre_norm = pre_norm - - self.block1 = Block(dim, dim_out, groups=groups) - self.block2 = Block(dim_out, dim_out, groups=groups) - if dim != dim_out: - self.res_conv = torch.nn.Conv2d(dim, dim_out, 1) - else: - self.res_conv = torch.nn.Identity() - - self.overwrite = overwrite - if self.overwrite: - in_channels = dim - out_channels = dim_out - temb_channels = time_emb_dim - - # To set via init - self.pre_norm = False - eps = 1e-5 - - self.in_channels = in_channels - out_channels = in_channels if out_channels is None else out_channels - self.out_channels = out_channels - self.use_conv_shortcut = conv_shortcut - - if self.pre_norm: - self.norm1 = Normalize(in_channels, num_groups=groups, eps=eps) - else: - self.norm1 = Normalize(out_channels, num_groups=groups, eps=eps) - - self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) - self.temb_proj = torch.nn.Linear(temb_channels, out_channels) - self.norm2 = Normalize(out_channels, num_groups=groups, eps=eps) - dropout = 0.0 - self.dropout = torch.nn.Dropout(dropout) - self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) - if self.in_channels != self.out_channels: - if self.use_conv_shortcut: - self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) - else: - self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) - - self.nonlinearity = Mish() - - self.is_overwritten = False - - def set_weights(self): - self.conv1.weight.data = self.block1.block[0].weight.data - self.conv1.bias.data = self.block1.block[0].bias.data - self.norm1.weight.data = self.block1.block[1].weight.data - self.norm1.bias.data = self.block1.block[1].bias.data - - self.conv2.weight.data = self.block2.block[0].weight.data - self.conv2.bias.data = self.block2.block[0].bias.data - self.norm2.weight.data = self.block2.block[1].weight.data - self.norm2.bias.data = self.block2.block[1].bias.data - - self.temb_proj.weight.data = self.mlp[1].weight.data - self.temb_proj.bias.data = self.mlp[1].bias.data - - if self.in_channels != self.out_channels: - self.nin_shortcut.weight.data = self.res_conv.weight.data - self.nin_shortcut.bias.data = self.res_conv.bias.data - - def forward(self, x, mask, time_emb): - h = self.block1(x, mask) - h += self.mlp(time_emb).unsqueeze(-1).unsqueeze(-1) - h = self.block2(h, mask) - output = h + self.res_conv(x * mask) - - output_2 = self.forward_2(x, time_emb, mask=mask) - return output - - def forward_2(self, x, temb, mask=None): - if not self.is_overwritten: - self.set_weights() - self.is_overwritten = True - - if mask is None: - mask = torch.ones_like(x) - - h = x - - h = h * mask - if self.pre_norm: - h = self.norm1(h) - h = self.nonlinearity(h) - - h = self.conv1(h) - - if not self.pre_norm: - h = self.norm1(h) - h = self.nonlinearity(h) - h = h * mask - - h = h + self.temb_proj(self.nonlinearity(temb))[:, :, None, None] - - h = h * mask - if self.pre_norm: - h = self.norm2(h) - h = self.nonlinearity(h) - - h = self.dropout(h) - h = self.conv2(h) - - if not self.pre_norm: - h = self.norm2(h) - h = self.nonlinearity(h) - h = h * mask - - x = x * mask - if self.in_channels != self.out_channels: - if self.use_conv_shortcut: - x = self.conv_shortcut(x) - else: - x = self.nin_shortcut(x) - - return x + h - - -class Block(torch.nn.Module): - def __init__(self, dim, dim_out, groups=8): - super(Block, self).__init__() - self.block = torch.nn.Sequential( - torch.nn.Conv2d(dim, dim_out, 3, padding=1), torch.nn.GroupNorm(groups, dim_out), Mish() - ) - - def forward(self, x, mask): - output = self.block(x * mask) - return output * mask - - -# unet_score_estimation.py -class ResnetBlockBigGANpp(nn.Module): - def __init__( - self, - act, - in_ch, - out_ch=None, - temb_dim=None, - up=False, - down=False, - dropout=0.1, - fir=False, - fir_kernel=(1, 3, 3, 1), - skip_rescale=True, - init_scale=0.0, - ): - super().__init__() - - out_ch = out_ch if out_ch else in_ch - self.GroupNorm_0 = nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6) - self.up = up - self.down = down - self.fir = fir - self.fir_kernel = fir_kernel - - self.Conv_0 = conv3x3(in_ch, out_ch) - if temb_dim is not None: - self.Dense_0 = nn.Linear(temb_dim, out_ch) - self.Dense_0.weight.data = default_init()(self.Dense_0.weight.shape) - nn.init.zeros_(self.Dense_0.bias) - - self.GroupNorm_1 = nn.GroupNorm(num_groups=min(out_ch // 4, 32), num_channels=out_ch, eps=1e-6) - self.Dropout_0 = nn.Dropout(dropout) - self.Conv_1 = conv3x3(out_ch, out_ch, init_scale=init_scale) - if in_ch != out_ch or up or down: - self.Conv_2 = conv1x1(in_ch, out_ch) - - self.skip_rescale = skip_rescale - self.act = act - self.in_ch = in_ch - self.out_ch = out_ch - - def forward(self, x, temb=None): - h = self.act(self.GroupNorm_0(x)) - - if self.up: - if self.fir: - h = upsample_2d(h, self.fir_kernel, factor=2) - x = upsample_2d(x, self.fir_kernel, factor=2) - else: - h = naive_upsample_2d(h, factor=2) - x = naive_upsample_2d(x, factor=2) - elif self.down: - if self.fir: - h = downsample_2d(h, self.fir_kernel, factor=2) - x = downsample_2d(x, self.fir_kernel, factor=2) - else: - h = naive_downsample_2d(h, factor=2) - x = naive_downsample_2d(x, factor=2) - - h = self.Conv_0(h) - # Add bias to each feature map conditioned on the time embedding - if temb is not None: - h += self.Dense_0(self.act(temb))[:, :, None, None] - h = self.act(self.GroupNorm_1(h)) - h = self.Dropout_0(h) - h = self.Conv_1(h) - - if self.in_ch != self.out_ch or self.up or self.down: - x = self.Conv_2(x) - - if not self.skip_rescale: - return x + h - else: - return (x + h) / np.sqrt(2.0) - - -# unet_score_estimation.py -class ResnetBlockDDPMpp(nn.Module): - """ResBlock adapted from DDPM.""" - - def __init__( - self, - act, - in_ch, - out_ch=None, - temb_dim=None, - conv_shortcut=False, - dropout=0.1, - skip_rescale=False, - init_scale=0.0, - ): - super().__init__() - out_ch = out_ch if out_ch else in_ch - self.GroupNorm_0 = nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6) - self.Conv_0 = conv3x3(in_ch, out_ch) - if temb_dim is not None: - self.Dense_0 = nn.Linear(temb_dim, out_ch) - self.Dense_0.weight.data = default_init()(self.Dense_0.weight.data.shape) - nn.init.zeros_(self.Dense_0.bias) - self.GroupNorm_1 = nn.GroupNorm(num_groups=min(out_ch // 4, 32), num_channels=out_ch, eps=1e-6) - self.Dropout_0 = nn.Dropout(dropout) - self.Conv_1 = conv3x3(out_ch, out_ch, init_scale=init_scale) - if in_ch != out_ch: - if conv_shortcut: - self.Conv_2 = conv3x3(in_ch, out_ch) - else: - self.NIN_0 = NIN(in_ch, out_ch) - - self.skip_rescale = skip_rescale - self.act = act - self.out_ch = out_ch - self.conv_shortcut = conv_shortcut - - def forward(self, x, temb=None): - h = self.act(self.GroupNorm_0(x)) - h = self.Conv_0(h) - if temb is not None: - h += self.Dense_0(self.act(temb))[:, :, None, None] - h = self.act(self.GroupNorm_1(h)) - h = self.Dropout_0(h) - h = self.Conv_1(h) - if x.shape[1] != self.out_ch: - if self.conv_shortcut: - x = self.Conv_2(x) - else: - x = self.NIN_0(x) - if not self.skip_rescale: - return x + h - else: - return (x + h) / np.sqrt(2.0) - - -# unet_rl.py -class ResidualTemporalBlock(nn.Module): - def __init__(self, inp_channels, out_channels, embed_dim, horizon, kernel_size=5): - super().__init__() - - self.blocks = nn.ModuleList( - [ - Conv1dBlock(inp_channels, out_channels, kernel_size), - Conv1dBlock(out_channels, out_channels, kernel_size), - ] - ) - - self.time_mlp = nn.Sequential( - nn.Mish(), - nn.Linear(embed_dim, out_channels), - RearrangeDim(), - # Rearrange("batch t -> batch t 1"), - ) - - self.residual_conv = ( - nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity() - ) - - def forward(self, x, t): - """ - x : [ batch_size x inp_channels x horizon ] t : [ batch_size x embed_dim ] returns: out : [ batch_size x - out_channels x horizon ] - """ - out = self.blocks[0](x) + self.time_mlp(t) - out = self.blocks[1](out) - return out + self.residual_conv(x) - - -# HELPER Modules - - -def normalization(channels, swish=0.0): - """ - Make a standard normalization layer, with an optional swish activation. - - :param channels: number of input channels. :return: an nn.Module for normalization. - """ - return GroupNorm32(num_channels=channels, num_groups=32, swish=swish) - - -class GroupNorm32(nn.GroupNorm): - def __init__(self, num_groups, num_channels, swish, eps=1e-5): - super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps) - self.swish = swish - - def forward(self, x): - y = super().forward(x.float()).to(x.dtype) - if self.swish == 1.0: - y = F.silu(y) - elif self.swish: - y = y * F.sigmoid(y * float(self.swish)) - return y - - -def linear(*args, **kwargs): - """ - Create a linear module. - """ - return nn.Linear(*args, **kwargs) - - -def zero_module(module): - """ - Zero out the parameters of a module and return it. - """ - for p in module.parameters(): - p.detach().zero_() - return module - - -class Mish(torch.nn.Module): - def forward(self, x): - return x * torch.tanh(torch.nn.functional.softplus(x)) - - -class Conv1dBlock(nn.Module): - """ - Conv1d --> GroupNorm --> Mish - """ - - def __init__(self, inp_channels, out_channels, kernel_size, n_groups=8): - super().__init__() - - self.block = nn.Sequential( - nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2), - RearrangeDim(), - # Rearrange("batch channels horizon -> batch channels 1 horizon"), - nn.GroupNorm(n_groups, out_channels), - RearrangeDim(), - # Rearrange("batch channels 1 horizon -> batch channels horizon"), - nn.Mish(), - ) - - def forward(self, x): - return self.block(x) - - -class RearrangeDim(nn.Module): - def __init__(self): - super().__init__() - - def forward(self, tensor): - if len(tensor.shape) == 2: - return tensor[:, :, None] - if len(tensor.shape) == 3: - return tensor[:, :, None, :] - elif len(tensor.shape) == 4: - return tensor[:, :, 0, :] - else: - raise ValueError(f"`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.") - - -def conv1x1(in_planes, out_planes, stride=1, bias=True, init_scale=1.0, padding=0): - """1x1 convolution with DDPM initialization.""" - conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, padding=padding, bias=bias) - conv.weight.data = default_init(init_scale)(conv.weight.data.shape) - nn.init.zeros_(conv.bias) - return conv - - -def conv3x3(in_planes, out_planes, stride=1, bias=True, dilation=1, init_scale=1.0, padding=1): - """3x3 convolution with DDPM initialization.""" - conv = nn.Conv2d( - in_planes, out_planes, kernel_size=3, stride=stride, padding=padding, dilation=dilation, bias=bias - ) - conv.weight.data = default_init(init_scale)(conv.weight.data.shape) - nn.init.zeros_(conv.bias) - return conv - - -def default_init(scale=1.0): - """The same initialization used in DDPM.""" - scale = 1e-10 if scale == 0 else scale - return variance_scaling(scale, "fan_avg", "uniform") - - -def variance_scaling(scale, mode, distribution, in_axis=1, out_axis=0, dtype=torch.float32, device="cpu"): - """Ported from JAX.""" - - def _compute_fans(shape, in_axis=1, out_axis=0): - receptive_field_size = np.prod(shape) / shape[in_axis] / shape[out_axis] - fan_in = shape[in_axis] * receptive_field_size - fan_out = shape[out_axis] * receptive_field_size - return fan_in, fan_out - - def init(shape, dtype=dtype, device=device): - fan_in, fan_out = _compute_fans(shape, in_axis, out_axis) - if mode == "fan_in": - denominator = fan_in - elif mode == "fan_out": - denominator = fan_out - elif mode == "fan_avg": - denominator = (fan_in + fan_out) / 2 - else: - raise ValueError("invalid mode for variance scaling initializer: {}".format(mode)) - variance = scale / denominator - if distribution == "normal": - return torch.randn(*shape, dtype=dtype, device=device) * np.sqrt(variance) - elif distribution == "uniform": - return (torch.rand(*shape, dtype=dtype, device=device) * 2.0 - 1.0) * np.sqrt(3 * variance) - else: - raise ValueError("invalid distribution for variance scaling initializer") - - return init - - -def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): - return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]) - - -def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1): - _, channel, in_h, in_w = input.shape - input = input.reshape(-1, in_h, in_w, 1) - - _, in_h, in_w, minor = input.shape - kernel_h, kernel_w = kernel.shape - - out = input.view(-1, in_h, 1, in_w, 1, minor) - out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1]) - out = out.view(-1, in_h * up_y, in_w * up_x, minor) - - out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) - out = out[ - :, - max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0), - max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0), - :, - ] - - out = out.permute(0, 3, 1, 2) - out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) - w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) - out = F.conv2d(out, w) - out = out.reshape( - -1, - minor, - in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, - in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, - ) - out = out.permute(0, 2, 3, 1) - out = out[:, ::down_y, ::down_x, :] - - out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 - out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 - - return out.view(-1, channel, out_h, out_w) - - -def upsample_2d(x, k=None, factor=2, gain=1): - r"""Upsample a batch of 2D images with the given filter. - - Args: - Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given - filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified - `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is a: - multiple of the upsampling factor. - x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, - C]`. - k: FIR filter of the shape `[firH, firW]` or `[firN]` - (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling. - factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). - - Returns: - Tensor of the shape `[N, C, H * factor, W * factor]` - """ - assert isinstance(factor, int) and factor >= 1 - if k is None: - k = [1] * factor - k = _setup_kernel(k) * (gain * (factor**2)) - p = k.shape[0] - factor - return upfirdn2d(x, torch.tensor(k, device=x.device), up=factor, pad=((p + 1) // 2 + factor - 1, p // 2)) - - -def downsample_2d(x, k=None, factor=2, gain=1): - r"""Downsample a batch of 2D images with the given filter. - - Args: - Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the - given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the - specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its - shape is a multiple of the downsampling factor. - x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, - C]`. - k: FIR filter of the shape `[firH, firW]` or `[firN]` - (separable). The default is `[1] * factor`, which corresponds to average pooling. - factor: Integer downsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). - - Returns: - Tensor of the shape `[N, C, H // factor, W // factor]` - """ - - assert isinstance(factor, int) and factor >= 1 - if k is None: - k = [1] * factor - k = _setup_kernel(k) * gain - p = k.shape[0] - factor - return upfirdn2d(x, torch.tensor(k, device=x.device), down=factor, pad=((p + 1) // 2, p // 2)) - - -def naive_upsample_2d(x, factor=2): - _N, C, H, W = x.shape - x = torch.reshape(x, (-1, C, H, 1, W, 1)) - x = x.repeat(1, 1, 1, factor, 1, factor) - return torch.reshape(x, (-1, C, H * factor, W * factor)) - - -def naive_downsample_2d(x, factor=2): - _N, C, H, W = x.shape - x = torch.reshape(x, (-1, C, H // factor, factor, W // factor, factor)) - return torch.mean(x, dim=(3, 5)) - - -class NIN(nn.Module): - def __init__(self, in_dim, num_units, init_scale=0.1): - super().__init__() - self.W = nn.Parameter(default_init(scale=init_scale)((in_dim, num_units)), requires_grad=True) - self.b = nn.Parameter(torch.zeros(num_units), requires_grad=True) - - def forward(self, x): - x = x.permute(0, 2, 3, 1) - y = contract_inner(x, self.W) + self.b - return y.permute(0, 3, 1, 2) - - -def _setup_kernel(k): - k = np.asarray(k, dtype=np.float32) - if k.ndim == 1: - k = np.outer(k, k) - k /= np.sum(k) - assert k.ndim == 2 - assert k.shape[0] == k.shape[1] - return k - - -def contract_inner(x, y): - """tensordot(x, y, 1).""" - x_chars = list(string.ascii_lowercase[: len(x.shape)]) - y_chars = list(string.ascii_lowercase[len(x.shape) : len(y.shape) + len(x.shape)]) - y_chars[0] = x_chars[-1] # first axis of y and last of x get summed - out_chars = x_chars[:-1] + y_chars[1:] - return _einsum(x_chars, y_chars, out_chars, x, y) - - -def _einsum(a, b, c, x, y): - einsum_str = "{},{}->{}".format("".join(a), "".join(b), "".join(c)) - return torch.einsum(einsum_str, x, y) From 466214d2d66429be663dc8405a35cdef82d1e5f6 Mon Sep 17 00:00:00 2001 From: Patrick von Platen Date: Wed, 29 Jun 2022 14:29:35 +0000 Subject: [PATCH 3/5] Remove bogus file --- src/diffusers/models/unet_grad_tts.py | 26 +++++++------------------- 1 file changed, 7 insertions(+), 19 deletions(-) diff --git a/src/diffusers/models/unet_grad_tts.py b/src/diffusers/models/unet_grad_tts.py index 432199cc..56614f8d 100644 --- a/src/diffusers/models/unet_grad_tts.py +++ b/src/diffusers/models/unet_grad_tts.py @@ -5,8 +5,7 @@ from ..modeling_utils import ModelMixin from .attention import LinearAttention from .embeddings import get_timestep_embedding from .resnet import Downsample -from .resnet import ResnetBlock as ResnetBlockNew -from .resnet import ResnetBlockGradTTS as ResnetBlock +from .resnet import ResnetBlock from .resnet import Upsample @@ -82,20 +81,13 @@ class UNetGradTTSModel(ModelMixin, ConfigMixin): self.ups = torch.nn.ModuleList([]) num_resolutions = len(in_out) -# num_groups = 8 -# self.pre_norm = False -# eps = 1e-5 -# non_linearity = "mish" - for ind, (dim_in, dim_out) in enumerate(in_out): is_last = ind >= (num_resolutions - 1) self.downs.append( torch.nn.ModuleList( [ -# ResnetBlock(dim_in, dim_out, time_emb_dim=dim), -# ResnetBlock(dim_out, dim_out, time_emb_dim=dim), - ResnetBlockNew(in_channels=dim_in, out_channels=dim_out, temb_channels=dim, groups=8, pre_norm=False, eps=1e-5, non_linearity="mish", overwrite_for_grad_tts=True), - ResnetBlockNew(in_channels=dim_out, out_channels=dim_out, temb_channels=dim, groups=8, pre_norm=False, eps=1e-5, non_linearity="mish", overwrite_for_grad_tts=True), + ResnetBlock(in_channels=dim_in, out_channels=dim_out, temb_channels=dim, groups=8, pre_norm=False, eps=1e-5, non_linearity="mish", overwrite_for_grad_tts=True), + ResnetBlock(in_channels=dim_out, out_channels=dim_out, temb_channels=dim, groups=8, pre_norm=False, eps=1e-5, non_linearity="mish", overwrite_for_grad_tts=True), Residual(Rezero(LinearAttention(dim_out))), Downsample(dim_out, use_conv=True, padding=1) if not is_last else torch.nn.Identity(), ] @@ -103,20 +95,16 @@ class UNetGradTTSModel(ModelMixin, ConfigMixin): ) mid_dim = dims[-1] -# self.mid_block1 = ResnetBlock(mid_dim, mid_dim, time_emb_dim=dim) -# self.mid_block2 = ResnetBlock(mid_dim, mid_dim, time_emb_dim=dim) - self.mid_block1 = ResnetBlockNew(in_channels=mid_dim, out_channels=mid_dim, temb_channels=dim, groups=8, pre_norm=False, eps=1e-5, non_linearity="mish", overwrite_for_grad_tts=True) + self.mid_block1 = ResnetBlock(in_channels=mid_dim, out_channels=mid_dim, temb_channels=dim, groups=8, pre_norm=False, eps=1e-5, non_linearity="mish", overwrite_for_grad_tts=True) self.mid_attn = Residual(Rezero(LinearAttention(mid_dim))) - self.mid_block2 = ResnetBlockNew(in_channels=mid_dim, out_channels=mid_dim, temb_channels=dim, groups=8, pre_norm=False, eps=1e-5, non_linearity="mish", overwrite_for_grad_tts=True) + self.mid_block2 = ResnetBlock(in_channels=mid_dim, out_channels=mid_dim, temb_channels=dim, groups=8, pre_norm=False, eps=1e-5, non_linearity="mish", overwrite_for_grad_tts=True) for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])): self.ups.append( torch.nn.ModuleList( [ -# ResnetBlock(dim_out * 2, dim_in, time_emb_dim=dim), -# ResnetBlock(dim_in, dim_in, time_emb_dim=dim), - ResnetBlockNew(in_channels=dim_out * 2, out_channels=dim_in, temb_channels=dim, groups=8, pre_norm=False, eps=1e-5, non_linearity="mish", overwrite_for_grad_tts=True), - ResnetBlockNew(in_channels=dim_in, out_channels=dim_in, temb_channels=dim, groups=8, pre_norm=False, eps=1e-5, non_linearity="mish", overwrite_for_grad_tts=True), + ResnetBlock(in_channels=dim_out * 2, out_channels=dim_in, temb_channels=dim, groups=8, pre_norm=False, eps=1e-5, non_linearity="mish", overwrite_for_grad_tts=True), + ResnetBlock(in_channels=dim_in, out_channels=dim_in, temb_channels=dim, groups=8, pre_norm=False, eps=1e-5, non_linearity="mish", overwrite_for_grad_tts=True), Residual(Rezero(LinearAttention(dim_in))), Upsample(dim_in, use_conv_transpose=True), ] From c174bcf4bf330e2512004f94b0e42406ad49442c Mon Sep 17 00:00:00 2001 From: Patrick von Platen Date: Wed, 29 Jun 2022 14:35:18 +0000 Subject: [PATCH 4/5] finish --- src/diffusers/models/resnet.py | 179 +------------------------- src/diffusers/models/unet_grad_tts.py | 12 +- 2 files changed, 8 insertions(+), 183 deletions(-) diff --git a/src/diffusers/models/resnet.py b/src/diffusers/models/resnet.py index cd0925cb..1a45a0e3 100644 --- a/src/diffusers/models/resnet.py +++ b/src/diffusers/models/resnet.py @@ -340,49 +340,7 @@ class ResBlock(TimestepBlock): return self.skip_connection(x) + h -# unet.py -class OLD_ResnetBlock(nn.Module): - def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512): - super().__init__() - self.in_channels = in_channels - out_channels = in_channels if out_channels is None else out_channels - self.out_channels = out_channels - self.use_conv_shortcut = conv_shortcut - - self.norm1 = Normalize(in_channels) - self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) - self.temb_proj = torch.nn.Linear(temb_channels, out_channels) - self.norm2 = Normalize(out_channels) - self.dropout = torch.nn.Dropout(dropout) - self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) - if self.in_channels != self.out_channels: - if self.use_conv_shortcut: - self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) - else: - self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) - - def forward(self, x, temb): - h = x - h = self.norm1(h) - h = nonlinearity(h) - h = self.conv1(h) - - h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] - - h = self.norm2(h) - h = nonlinearity(h) - h = self.dropout(h) - h = self.conv2(h) - - if self.in_channels != self.out_channels: - if self.use_conv_shortcut: - x = self.conv_shortcut(x) - else: - x = self.nin_shortcut(x) - - return x + h - - +# unet.py and unet_grad_tts.py class ResnetBlock(nn.Module): def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout=0.0, temb_channels=512, groups=32, pre_norm=True, eps=1e-6, non_linearity="swish", overwrite_for_grad_tts=False): super().__init__() @@ -429,11 +387,6 @@ class ResnetBlock(nn.Module): else: self.res_conv = torch.nn.Identity() -# num_groups = 8 -# self.pre_norm = False -# eps = 1e-5 -# non_linearity = "mish" - def set_weights_grad_tts(self): self.conv1.weight.data = self.block1.block[0].weight.data self.conv1.bias.data = self.block1.block[0].bias.data @@ -453,11 +406,6 @@ class ResnetBlock(nn.Module): self.nin_shortcut.bias.data = self.res_conv.bias.data def forward(self, x, temb, mask=None): - if not self.pre_norm: - temp = mask - mask = temb - temb = temp - if self.overwrite_for_grad_tts and not self.is_overwritten: self.set_weights_grad_tts() self.is_overwritten = True @@ -500,130 +448,7 @@ class ResnetBlock(nn.Module): return x + h -# unet_grad_tts.py -class ResnetBlockGradTTS(torch.nn.Module): - def __init__(self, dim, dim_out, time_emb_dim, groups=8, eps=1e-6, overwrite=True, conv_shortcut=False, pre_norm=True): - super(ResnetBlockGradTTS, self).__init__() - self.mlp = torch.nn.Sequential(Mish(), torch.nn.Linear(time_emb_dim, dim_out)) - self.pre_norm = pre_norm - - self.block1 = Block(dim, dim_out, groups=groups) - self.block2 = Block(dim_out, dim_out, groups=groups) - if dim != dim_out: - self.res_conv = torch.nn.Conv2d(dim, dim_out, 1) - else: - self.res_conv = torch.nn.Identity() - - self.overwrite = overwrite - if self.overwrite: - in_channels = dim - out_channels = dim_out - temb_channels = time_emb_dim - - # To set via init - self.pre_norm = False - eps = 1e-5 - - self.in_channels = in_channels - out_channels = in_channels if out_channels is None else out_channels - self.out_channels = out_channels - self.use_conv_shortcut = conv_shortcut - - if self.pre_norm: - self.norm1 = Normalize(in_channels, num_groups=groups, eps=eps) - else: - self.norm1 = Normalize(out_channels, num_groups=groups, eps=eps) - - self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) - self.temb_proj = torch.nn.Linear(temb_channels, out_channels) - self.norm2 = Normalize(out_channels, num_groups=groups, eps=eps) - dropout = 0.0 - self.dropout = torch.nn.Dropout(dropout) - self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) - if self.in_channels != self.out_channels: - if self.use_conv_shortcut: - self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) - else: - self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) - - self.nonlinearity = Mish() - - self.is_overwritten = False - - def set_weights(self): - self.conv1.weight.data = self.block1.block[0].weight.data - self.conv1.bias.data = self.block1.block[0].bias.data - self.norm1.weight.data = self.block1.block[1].weight.data - self.norm1.bias.data = self.block1.block[1].bias.data - - self.conv2.weight.data = self.block2.block[0].weight.data - self.conv2.bias.data = self.block2.block[0].bias.data - self.norm2.weight.data = self.block2.block[1].weight.data - self.norm2.bias.data = self.block2.block[1].bias.data - - self.temb_proj.weight.data = self.mlp[1].weight.data - self.temb_proj.bias.data = self.mlp[1].bias.data - - if self.in_channels != self.out_channels: - self.nin_shortcut.weight.data = self.res_conv.weight.data - self.nin_shortcut.bias.data = self.res_conv.bias.data - - def forward(self, x, mask, time_emb): - h = self.block1(x, mask) - h += self.mlp(time_emb).unsqueeze(-1).unsqueeze(-1) - h = self.block2(h, mask) - output = h + self.res_conv(x * mask) - - output = self.forward_2(x, time_emb, mask=mask) - return output - - def forward_2(self, x, temb, mask=None): - if not self.is_overwritten: - self.set_weights() - self.is_overwritten = True - - if mask is None: - mask = torch.ones_like(x) - - h = x - - h = h * mask - if self.pre_norm: - h = self.norm1(h) - h = self.nonlinearity(h) - - h = self.conv1(h) - - if not self.pre_norm: - h = self.norm1(h) - h = self.nonlinearity(h) - h = h * mask - - h = h + self.temb_proj(self.nonlinearity(temb))[:, :, None, None] - - h = h * mask - if self.pre_norm: - h = self.norm2(h) - h = self.nonlinearity(h) - - h = self.dropout(h) - h = self.conv2(h) - - if not self.pre_norm: - h = self.norm2(h) - h = self.nonlinearity(h) - h = h * mask - - x = x * mask - if self.in_channels != self.out_channels: - if self.use_conv_shortcut: - x = self.conv_shortcut(x) - else: - x = self.nin_shortcut(x) - - return x + h - - +# TODO(Patrick) - just there to convert the weights; can delete afterward class Block(torch.nn.Module): def __init__(self, dim, dim_out, groups=8): super(Block, self).__init__() diff --git a/src/diffusers/models/unet_grad_tts.py b/src/diffusers/models/unet_grad_tts.py index 56614f8d..8316fd3c 100644 --- a/src/diffusers/models/unet_grad_tts.py +++ b/src/diffusers/models/unet_grad_tts.py @@ -135,8 +135,8 @@ class UNetGradTTSModel(ModelMixin, ConfigMixin): masks = [mask] for resnet1, resnet2, attn, downsample in self.downs: mask_down = masks[-1] - x = resnet1(x, mask_down, t) - x = resnet2(x, mask_down, t) + x = resnet1(x, t, mask_down) + x = resnet2(x, t, mask_down) x = attn(x) hiddens.append(x) x = downsample(x * mask_down) @@ -144,15 +144,15 @@ class UNetGradTTSModel(ModelMixin, ConfigMixin): masks = masks[:-1] mask_mid = masks[-1] - x = self.mid_block1(x, mask_mid, t) + x = self.mid_block1(x, t, mask_mid) x = self.mid_attn(x) - x = self.mid_block2(x, mask_mid, t) + x = self.mid_block2(x, t, mask_mid) for resnet1, resnet2, attn, upsample in self.ups: mask_up = masks.pop() x = torch.cat((x, hiddens.pop()), dim=1) - x = resnet1(x, mask_up, t) - x = resnet2(x, mask_up, t) + x = resnet1(x, t, mask_up) + x = resnet2(x, t, mask_up) x = attn(x) x = upsample(x * mask_up) From 046dc4307507b02b8514c63c7664b723da84f2ac Mon Sep 17 00:00:00 2001 From: Patrick von Platen Date: Wed, 29 Jun 2022 14:36:35 +0000 Subject: [PATCH 5/5] make style --- src/diffusers/models/resnet.py | 23 +++++++-- src/diffusers/models/unet_grad_tts.py | 70 +++++++++++++++++++++++---- 2 files changed, 79 insertions(+), 14 deletions(-) diff --git a/src/diffusers/models/resnet.py b/src/diffusers/models/resnet.py index 1a45a0e3..9a7eaa2e 100644 --- a/src/diffusers/models/resnet.py +++ b/src/diffusers/models/resnet.py @@ -166,8 +166,8 @@ class Downsample(nn.Module): # # class GlideUpsample(nn.Module): # """ -# An upsampling layer with an optional convolution. # # :param channels: channels in the inputs and outputs. :param -# use_conv: a bool determining if a convolution is # applied. :param dims: determines if the signal is 1D, 2D, or 3D. If +# An upsampling layer with an optional convolution. # # :param channels: channels in the inputs and outputs. :param # +use_conv: a bool determining if a convolution is # applied. :param dims: determines if the signal is 1D, 2D, or 3D. If # 3D, then # upsampling occurs in the inner-two dimensions. #""" # # def __init__(self, channels, use_conv, dims=2, out_channels=None): @@ -192,8 +192,8 @@ class Downsample(nn.Module): # # class LDMUpsample(nn.Module): # """ -# An upsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param # -# use_conv: a bool determining if a convolution is applied. :param dims: determines if the signal is 1D, 2D, or 3D. # If +# An upsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param # # +use_conv: a bool determining if a convolution is applied. :param dims: determines if the signal is 1D, 2D, or 3D. # If # 3D, then # upsampling occurs in the inner-two dimensions. #""" # # def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): @@ -342,7 +342,20 @@ class ResBlock(TimestepBlock): # unet.py and unet_grad_tts.py class ResnetBlock(nn.Module): - def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout=0.0, temb_channels=512, groups=32, pre_norm=True, eps=1e-6, non_linearity="swish", overwrite_for_grad_tts=False): + def __init__( + self, + *, + in_channels, + out_channels=None, + conv_shortcut=False, + dropout=0.0, + temb_channels=512, + groups=32, + pre_norm=True, + eps=1e-6, + non_linearity="swish", + overwrite_for_grad_tts=False, + ): super().__init__() self.pre_norm = pre_norm self.in_channels = in_channels diff --git a/src/diffusers/models/unet_grad_tts.py b/src/diffusers/models/unet_grad_tts.py index 8316fd3c..27c6264c 100644 --- a/src/diffusers/models/unet_grad_tts.py +++ b/src/diffusers/models/unet_grad_tts.py @@ -4,9 +4,7 @@ from ..configuration_utils import ConfigMixin from ..modeling_utils import ModelMixin from .attention import LinearAttention from .embeddings import get_timestep_embedding -from .resnet import Downsample -from .resnet import ResnetBlock -from .resnet import Upsample +from .resnet import Downsample, ResnetBlock, Upsample class Mish(torch.nn.Module): @@ -86,8 +84,26 @@ class UNetGradTTSModel(ModelMixin, ConfigMixin): self.downs.append( torch.nn.ModuleList( [ - ResnetBlock(in_channels=dim_in, out_channels=dim_out, temb_channels=dim, groups=8, pre_norm=False, eps=1e-5, non_linearity="mish", overwrite_for_grad_tts=True), - ResnetBlock(in_channels=dim_out, out_channels=dim_out, temb_channels=dim, groups=8, pre_norm=False, eps=1e-5, non_linearity="mish", overwrite_for_grad_tts=True), + ResnetBlock( + in_channels=dim_in, + out_channels=dim_out, + temb_channels=dim, + groups=8, + pre_norm=False, + eps=1e-5, + non_linearity="mish", + overwrite_for_grad_tts=True, + ), + ResnetBlock( + in_channels=dim_out, + out_channels=dim_out, + temb_channels=dim, + groups=8, + pre_norm=False, + eps=1e-5, + non_linearity="mish", + overwrite_for_grad_tts=True, + ), Residual(Rezero(LinearAttention(dim_out))), Downsample(dim_out, use_conv=True, padding=1) if not is_last else torch.nn.Identity(), ] @@ -95,16 +111,52 @@ class UNetGradTTSModel(ModelMixin, ConfigMixin): ) mid_dim = dims[-1] - self.mid_block1 = ResnetBlock(in_channels=mid_dim, out_channels=mid_dim, temb_channels=dim, groups=8, pre_norm=False, eps=1e-5, non_linearity="mish", overwrite_for_grad_tts=True) + self.mid_block1 = ResnetBlock( + in_channels=mid_dim, + out_channels=mid_dim, + temb_channels=dim, + groups=8, + pre_norm=False, + eps=1e-5, + non_linearity="mish", + overwrite_for_grad_tts=True, + ) self.mid_attn = Residual(Rezero(LinearAttention(mid_dim))) - self.mid_block2 = ResnetBlock(in_channels=mid_dim, out_channels=mid_dim, temb_channels=dim, groups=8, pre_norm=False, eps=1e-5, non_linearity="mish", overwrite_for_grad_tts=True) + self.mid_block2 = ResnetBlock( + in_channels=mid_dim, + out_channels=mid_dim, + temb_channels=dim, + groups=8, + pre_norm=False, + eps=1e-5, + non_linearity="mish", + overwrite_for_grad_tts=True, + ) for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])): self.ups.append( torch.nn.ModuleList( [ - ResnetBlock(in_channels=dim_out * 2, out_channels=dim_in, temb_channels=dim, groups=8, pre_norm=False, eps=1e-5, non_linearity="mish", overwrite_for_grad_tts=True), - ResnetBlock(in_channels=dim_in, out_channels=dim_in, temb_channels=dim, groups=8, pre_norm=False, eps=1e-5, non_linearity="mish", overwrite_for_grad_tts=True), + ResnetBlock( + in_channels=dim_out * 2, + out_channels=dim_in, + temb_channels=dim, + groups=8, + pre_norm=False, + eps=1e-5, + non_linearity="mish", + overwrite_for_grad_tts=True, + ), + ResnetBlock( + in_channels=dim_in, + out_channels=dim_in, + temb_channels=dim, + groups=8, + pre_norm=False, + eps=1e-5, + non_linearity="mish", + overwrite_for_grad_tts=True, + ), Residual(Rezero(LinearAttention(dim_in))), Upsample(dim_in, use_conv_transpose=True), ]