Revive `make quality` (#203)

* Revive Make utils

* Add datasets for training too
This commit is contained in:
Anton Lozhkov 2022-08-17 15:22:04 +02:00 committed by GitHub
parent f9522d825c
commit ed22b4fd07
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
16 changed files with 27 additions and 140 deletions

View File

@ -79,11 +79,6 @@ test:
test-examples:
python -m pytest -n auto --dist=loadfile -s -v ./examples/pytorch/
# Run tests for SageMaker DLC release
test-sagemaker: # install sagemaker dependencies in advance with pip install .[sagemaker]
TEST_SAGEMAKER=True python -m pytest -n auto -s -v ./tests/sagemaker
# Release stuff

View File

@ -77,19 +77,22 @@ from setuptools import find_packages, setup
# 2. once modified, run: `make deps_table_update` to update src/diffusers/dependency_versions_table.py
_deps = [
"Pillow",
"accelerate>=0.11.0",
"black~=22.0,>=22.3",
"datasets",
"filelock",
"flake8>=3.8.3",
"hf-doc-builder>=0.3.0",
"huggingface-hub",
"importlib_metadata",
"isort>=5.5.4",
"modelcards==0.1.4",
"numpy",
"pytest",
"regex!=2019.12.17",
"requests",
"torch>=1.4",
"tensorboard",
"modelcards==0.1.4"
"torch>=1.4",
]
# this is a lookup table with items like:
@ -161,12 +164,10 @@ extras = {}
extras = {}
extras["quality"] = ["black ~= 22.0", "isort >= 5.5.4", "flake8 >= 3.8.3"]
extras["docs"] = []
extras["training"] = ["tensorboard", "modelcards"]
extras["test"] = [
"pytest",
]
extras["dev"] = extras["quality"] + extras["test"] + extras["training"]
extras["docs"] = ["hf-doc-builder"]
extras["training"] = ["accelerate", "datasets", "tensorboard", "modelcards"]
extras["test"] = ["pytest"]
extras["dev"] = extras["quality"] + extras["test"] + extras["training"] + extras["docs"]
install_requires = [
deps["importlib_metadata"],

View File

@ -3,17 +3,19 @@
# 2. run `make deps_table_update``
deps = {
"Pillow": "Pillow",
"accelerate": "accelerate>=0.11.0",
"black": "black~=22.0,>=22.3",
"filelock": "filelock",
"flake8": "flake8>=3.8.3",
"hf-doc-builder": "hf-doc-builder>=0.3.0",
"huggingface-hub": "huggingface-hub",
"importlib_metadata": "importlib_metadata",
"isort": "isort>=5.5.4",
"modelcards": "modelcards==0.1.4",
"numpy": "numpy",
"pytest": "pytest",
"regex": "regex!=2019.12.17",
"requests": "requests",
"torch": "torch>=1.4",
"tensorboard": "tensorboard",
"modelcards": "modelcards==0.1.4",
}

View File

@ -18,7 +18,6 @@ import math
from enum import Enum
from typing import Optional, Union
import torch
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR

View File

@ -1,4 +1,8 @@
from ..utils import is_inflect_available, is_transformers_available, is_unidecode_available
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
from ..utils import is_transformers_available
from .ddim import DDIMPipeline
from .ddpm import DDPMPipeline
from .latent_diffusion_uncond import LDMPipeline

View File

@ -1 +1,2 @@
# flake8: noqa
from .pipeline_ddim import DDIMPipeline

View File

@ -1 +1,2 @@
# flake8: noqa
from .pipeline_ddpm import DDPMPipeline

View File

@ -1,3 +1,4 @@
# flake8: noqa
from ...utils import is_transformers_available

View File

@ -1 +1,2 @@
# flake8: noqa
from .pipeline_latent_diffusion_uncond import LDMPipeline

View File

@ -1 +1,2 @@
# flake8: noqa
from .pipeline_pndm import PNDMPipeline

View File

@ -1 +1,2 @@
# flake8: noqa
from .pipeline_score_sde_ve import ScoreSdeVePipeline

View File

@ -1,3 +1,4 @@
# flake8: noqa
from ...utils import is_transformers_available

View File

@ -1 +1,2 @@
# flake8: noqa
from .pipeline_stochastic_karras_ve import KarrasVePipeline

View File

@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Union
from typing import Union
import numpy as np
import torch

View File

@ -8,17 +8,3 @@ class LMSDiscreteScheduler(metaclass=DummyObject):
def __init__(self, *args, **kwargs):
requires_backends(self, ["scipy"])
class LDMTextToImagePipeline(metaclass=DummyObject):
_backends = ["scipy"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["scipy"])
class StableDiffusionPipeline(metaclass=DummyObject):
_backends = ["scipy"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["scipy"])

View File

@ -14,16 +14,13 @@
# limitations under the License.
import inspect
import tempfile
import unittest
import numpy as np
import torch
from diffusers.models.embeddings import get_timestep_embedding
from diffusers.models.resnet import Downsample1D, Downsample2D, Upsample1D, Upsample2D
from diffusers.testing_utils import floats_tensor, slow, torch_device
from diffusers.models.resnet import Downsample2D, Upsample2D
torch.backends.cuda.matmul.allow_tf32 = False
@ -219,108 +216,3 @@ class Downsample2DBlockTests(unittest.TestCase):
output_slice = downsampled[0, -1, -3:, -3:]
expected_slice = torch.tensor([-0.6586, 0.5985, 0.0721, 0.1256, -0.1492, 0.4436, -0.2544, 0.5021, 1.1522])
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
class Upsample1DBlockTests(unittest.TestCase):
def test_upsample_default(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 32)
upsample = Upsample1D(channels=32, use_conv=False)
with torch.no_grad():
upsampled = upsample(sample)
assert upsampled.shape == (1, 32, 64)
output_slice = upsampled[0, -1, -8:]
expected_slice = torch.tensor([-1.6340, -1.6340, 0.5374, 0.5374, 1.0826, 1.0826, -1.7105, -1.7105])
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_upsample_with_conv(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 32)
upsample = Upsample1D(channels=32, use_conv=True)
with torch.no_grad():
upsampled = upsample(sample)
assert upsampled.shape == (1, 32, 64)
output_slice = upsampled[0, -1, -8:]
expected_slice = torch.tensor([-0.4546, -0.5010, -0.2996, 0.2844, 0.4040, -0.7772, -0.6862, 0.3612])
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_upsample_with_conv_out_dim(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 32)
upsample = Upsample1D(channels=32, use_conv=True, out_channels=64)
with torch.no_grad():
upsampled = upsample(sample)
assert upsampled.shape == (1, 64, 64)
output_slice = upsampled[0, -1, -8:]
expected_slice = torch.tensor([-0.0516, -0.0972, 0.9740, 1.1883, 0.4539, -0.5285, -0.5851, 0.1152])
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_upsample_with_transpose(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 32)
upsample = Upsample1D(channels=32, use_conv=False, use_conv_transpose=True)
with torch.no_grad():
upsampled = upsample(sample)
assert upsampled.shape == (1, 32, 64)
output_slice = upsampled[0, -1, -8:]
expected_slice = torch.tensor([-0.2238, -0.5842, -0.7165, 0.6699, 0.1033, -0.4269, -0.8974, -0.3716])
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
class Downsample1DBlockTests(unittest.TestCase):
def test_downsample_default(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 64)
downsample = Downsample1D(channels=32, use_conv=False)
with torch.no_grad():
downsampled = downsample(sample)
assert downsampled.shape == (1, 32, 32)
output_slice = downsampled[0, -1, -8:]
expected_slice = torch.tensor([-0.8796, 1.0945, -0.3434, 0.2910, 0.3391, -0.4488, -0.9568, -0.2909])
max_diff = (output_slice.flatten() - expected_slice).abs().sum().item()
assert max_diff <= 1e-3
# assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-1)
def test_downsample_with_conv(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 64)
downsample = Downsample1D(channels=32, use_conv=True)
with torch.no_grad():
downsampled = downsample(sample)
assert downsampled.shape == (1, 32, 32)
output_slice = downsampled[0, -1, -8:]
expected_slice = torch.tensor(
[0.1723, 0.0811, -0.6205, -0.3045, 0.0666, -0.2381, -0.0238, 0.2834],
)
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_downsample_with_conv_pad1(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 64)
downsample = Downsample1D(channels=32, use_conv=True, padding=1)
with torch.no_grad():
downsampled = downsample(sample)
assert downsampled.shape == (1, 32, 32)
output_slice = downsampled[0, -1, -8:]
expected_slice = torch.tensor([0.1723, 0.0811, -0.6205, -0.3045, 0.0666, -0.2381, -0.0238, 0.2834])
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
def test_downsample_with_conv_out_dim(self):
torch.manual_seed(0)
sample = torch.randn(1, 32, 64)
downsample = Downsample1D(channels=32, use_conv=True, out_channels=16)
with torch.no_grad():
downsampled = downsample(sample)
assert downsampled.shape == (1, 16, 32)
output_slice = downsampled[0, -1, -8:]
expected_slice = torch.tensor([1.1067, -0.5255, -0.4451, 0.0487, -0.3664, -0.7945, -0.4495, -0.3129])
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)