diff --git a/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint_legacy.py b/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint_legacy.py index 631e7129..802c8177 100644 --- a/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint_legacy.py +++ b/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint_legacy.py @@ -5,7 +5,6 @@ import numpy as np import torch import PIL -from packaging import version from transformers import CLIPFeatureExtractor, CLIPTokenizer from ...configuration_utils import FrozenDict @@ -68,6 +67,8 @@ class OnnxStableDiffusionInpaintPipelineLegacy(DiffusionPipeline): feature_extractor ([`CLIPFeatureExtractor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ + _optional_components = ["safety_checker", "feature_extractor"] + vae_encoder: OnnxRuntimeModel vae_decoder: OnnxRuntimeModel text_encoder: OnnxRuntimeModel @@ -134,27 +135,6 @@ class OnnxStableDiffusionInpaintPipelineLegacy(DiffusionPipeline): " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) - is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( - version.parse(unet.config._diffusers_version).base_version - ) < version.parse("0.9.0.dev0") - is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 - if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: - deprecation_message = ( - "The configuration file of the unet has set the default `sample_size` to smaller than" - " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the" - " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" - " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" - " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" - " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" - " in the config might lead to incorrect results in future versions. If you have downloaded this" - " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" - " the `unet/config.json` file" - ) - deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) - new_config = dict(unet.config) - new_config["sample_size"] = 64 - unet._internal_dict = FrozenDict(new_config) - self.register_modules( vae_encoder=vae_encoder, vae_decoder=vae_decoder, @@ -165,7 +145,6 @@ class OnnxStableDiffusionInpaintPipelineLegacy(DiffusionPipeline): safety_checker=safety_checker, feature_extractor=feature_extractor, ) - self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.register_to_config(requires_safety_checker=requires_safety_checker) # Copied from diffusers.pipelines.stable_diffusion.pipeline_onnx_stable_diffusion.OnnxStableDiffusionPipeline._encode_prompt @@ -372,7 +351,7 @@ class OnnxStableDiffusionInpaintPipelineLegacy(DiffusionPipeline): # preprocess mask if not isinstance(mask_image, np.ndarray): - mask_image = preprocess_mask(mask_image, self.vae_scale_factor) + mask_image = preprocess_mask(mask_image, 8) mask_image = mask_image.astype(latents_dtype) mask = np.concatenate([mask_image] * num_images_per_prompt, axis=0)