Add support for different model prediction types in DDIMInverseScheduler (#2619)
* Add support for different model prediction types in DDIMInverseScheduler Resolve alpha_prod_t_prev index issue for final step of inversion * Fix old bug introduced when prediction type is "sample" * Add support for sample clipping for numerical stability and deprecate old kwarg * Detach sample, alphas, betas Derive predicted noise from model output before dist. regularization Style cleanup * Log loss for debugging * Revert "Log loss for debugging" This reverts commit 76ea9c856f99f4c8eca45a0b1801593bb982584b. * Add comments * Add inversion equivalence test * Add expected data for Pix2PixZero pipeline tests with SD 2 * Update tests/pipelines/stable_diffusion/test_stable_diffusion_pix2pix_zero.py * Remove cruft and add more explanatory comments --------- Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
This commit is contained in:
parent
268ebcb015
commit
ee71d9d03d
|
@ -153,6 +153,8 @@ EXAMPLE_INVERT_DOC_STRING = """
|
|||
>>> source_embeds = pipeline.get_embeds(source_prompts)
|
||||
>>> target_embeds = pipeline.get_embeds(target_prompts)
|
||||
>>> # the latents can then be used to edit a real image
|
||||
>>> # when using Stable Diffusion 2 or other models that use v-prediction
|
||||
>>> # set `cross_attention_guidance_amount` to 0.01 or less to avoid input latent gradient explosion
|
||||
|
||||
>>> image = pipeline(
|
||||
... caption,
|
||||
|
@ -730,6 +732,23 @@ class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline):
|
|||
|
||||
return latents
|
||||
|
||||
def get_epsilon(self, model_output: torch.Tensor, sample: torch.Tensor, timestep: int):
|
||||
pred_type = self.inverse_scheduler.config.prediction_type
|
||||
alpha_prod_t = self.inverse_scheduler.alphas_cumprod[timestep]
|
||||
|
||||
beta_prod_t = 1 - alpha_prod_t
|
||||
|
||||
if pred_type == "epsilon":
|
||||
return model_output
|
||||
elif pred_type == "sample":
|
||||
return (sample - alpha_prod_t ** (0.5) * model_output) / beta_prod_t ** (0.5)
|
||||
elif pred_type == "v_prediction":
|
||||
return (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
|
||||
else:
|
||||
raise ValueError(
|
||||
f"prediction_type given as {pred_type} must be one of `epsilon`, `sample`, or `v_prediction`"
|
||||
)
|
||||
|
||||
def auto_corr_loss(self, hidden_states, generator=None):
|
||||
batch_size, channel, height, width = hidden_states.shape
|
||||
if batch_size > 1:
|
||||
|
@ -1156,8 +1175,8 @@ class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline):
|
|||
|
||||
# 7. Denoising loop where we obtain the cross-attention maps.
|
||||
num_warmup_steps = len(timesteps) - num_inference_steps * self.inverse_scheduler.order
|
||||
with self.progress_bar(total=num_inference_steps - 2) as progress_bar:
|
||||
for i, t in enumerate(timesteps[1:-1]):
|
||||
with self.progress_bar(total=num_inference_steps - 1) as progress_bar:
|
||||
for i, t in enumerate(timesteps[:-1]):
|
||||
# expand the latents if we are doing classifier free guidance
|
||||
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||
latent_model_input = self.inverse_scheduler.scale_model_input(latent_model_input, t)
|
||||
|
@ -1181,7 +1200,11 @@ class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline):
|
|||
if lambda_auto_corr > 0:
|
||||
for _ in range(num_auto_corr_rolls):
|
||||
var = torch.autograd.Variable(noise_pred.detach().clone(), requires_grad=True)
|
||||
l_ac = self.auto_corr_loss(var, generator=generator)
|
||||
|
||||
# Derive epsilon from model output before regularizing to IID standard normal
|
||||
var_epsilon = self.get_epsilon(var, latent_model_input.detach(), t)
|
||||
|
||||
l_ac = self.auto_corr_loss(var_epsilon, generator=generator)
|
||||
l_ac.backward()
|
||||
|
||||
grad = var.grad.detach() / num_auto_corr_rolls
|
||||
|
@ -1190,7 +1213,10 @@ class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline):
|
|||
if lambda_kl > 0:
|
||||
var = torch.autograd.Variable(noise_pred.detach().clone(), requires_grad=True)
|
||||
|
||||
l_kld = self.kl_divergence(var)
|
||||
# Derive epsilon from model output before regularizing to IID standard normal
|
||||
var_epsilon = self.get_epsilon(var, latent_model_input.detach(), t)
|
||||
|
||||
l_kld = self.kl_divergence(var_epsilon)
|
||||
l_kld.backward()
|
||||
|
||||
grad = var.grad.detach()
|
||||
|
|
|
@ -23,7 +23,7 @@ import torch
|
|||
|
||||
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
||||
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
||||
from diffusers.utils import BaseOutput
|
||||
from diffusers.utils import BaseOutput, deprecate
|
||||
|
||||
|
||||
@dataclass
|
||||
|
@ -96,15 +96,17 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
|
|||
trained_betas (`np.ndarray`, optional):
|
||||
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
|
||||
clip_sample (`bool`, default `True`):
|
||||
option to clip predicted sample between -1 and 1 for numerical stability.
|
||||
set_alpha_to_one (`bool`, default `True`):
|
||||
option to clip predicted sample for numerical stability.
|
||||
clip_sample_range (`float`, default `1.0`):
|
||||
the maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
|
||||
set_alpha_to_zero (`bool`, default `True`):
|
||||
each diffusion step uses the value of alphas product at that step and at the previous one. For the final
|
||||
step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
|
||||
otherwise it uses the value of alpha at step 0.
|
||||
step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `0`,
|
||||
otherwise it uses the value of alpha at step `num_train_timesteps - 1`.
|
||||
steps_offset (`int`, default `0`):
|
||||
an offset added to the inference steps. You can use a combination of `offset=1` and
|
||||
`set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in
|
||||
stable diffusion.
|
||||
`set_alpha_to_zero=False`, to make the last step use step `num_train_timesteps - 1` for the previous alpha
|
||||
product.
|
||||
prediction_type (`str`, default `epsilon`, optional):
|
||||
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
|
||||
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
|
||||
|
@ -122,10 +124,18 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
|
|||
beta_schedule: str = "linear",
|
||||
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
||||
clip_sample: bool = True,
|
||||
set_alpha_to_one: bool = True,
|
||||
set_alpha_to_zero: bool = True,
|
||||
steps_offset: int = 0,
|
||||
prediction_type: str = "epsilon",
|
||||
clip_sample_range: float = 1.0,
|
||||
**kwargs,
|
||||
):
|
||||
if kwargs.get("set_alpha_to_one", None) is not None:
|
||||
deprecation_message = (
|
||||
"The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead."
|
||||
)
|
||||
deprecate("set_alpha_to_one", "1.0.0", deprecation_message, standard_warn=False)
|
||||
set_alpha_to_zero = kwargs["set_alpha_to_one"]
|
||||
if trained_betas is not None:
|
||||
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
||||
elif beta_schedule == "linear":
|
||||
|
@ -144,11 +154,12 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
|
|||
self.alphas = 1.0 - self.betas
|
||||
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
||||
|
||||
# At every step in ddim, we are looking into the previous alphas_cumprod
|
||||
# For the final step, there is no previous alphas_cumprod because we are already at 0
|
||||
# `set_alpha_to_one` decides whether we set this parameter simply to one or
|
||||
# whether we use the final alpha of the "non-previous" one.
|
||||
self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
|
||||
# At every step in inverted ddim, we are looking into the next alphas_cumprod
|
||||
# For the final step, there is no next alphas_cumprod, and the index is out of bounds
|
||||
# `set_alpha_to_zero` decides whether we set this parameter simply to zero
|
||||
# in this case, self.step() just output the predicted noise
|
||||
# or whether we use the final alpha of the "non-previous" one.
|
||||
self.final_alpha_cumprod = torch.tensor(0.0) if set_alpha_to_zero else self.alphas_cumprod[-1]
|
||||
|
||||
# standard deviation of the initial noise distribution
|
||||
self.init_noise_sigma = 1.0
|
||||
|
@ -157,6 +168,7 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
|
|||
self.num_inference_steps = None
|
||||
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps).copy().astype(np.int64))
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_ddim.DDIMScheduler.scale_model_input
|
||||
def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
|
||||
"""
|
||||
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
||||
|
@ -205,23 +217,52 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
|
|||
variance_noise: Optional[torch.FloatTensor] = None,
|
||||
return_dict: bool = True,
|
||||
) -> Union[DDIMSchedulerOutput, Tuple]:
|
||||
e_t = model_output
|
||||
|
||||
x = sample
|
||||
# 1. get previous step value (=t+1)
|
||||
prev_timestep = timestep + self.config.num_train_timesteps // self.num_inference_steps
|
||||
|
||||
a_t = self.alphas_cumprod[timestep - 1]
|
||||
a_prev = self.alphas_cumprod[prev_timestep - 1] if prev_timestep >= 0 else self.final_alpha_cumprod
|
||||
# 2. compute alphas, betas
|
||||
# change original implementation to exactly match noise levels for analogous forward process
|
||||
alpha_prod_t = self.alphas_cumprod[timestep]
|
||||
alpha_prod_t_prev = (
|
||||
self.alphas_cumprod[prev_timestep]
|
||||
if prev_timestep < self.config.num_train_timesteps
|
||||
else self.final_alpha_cumprod
|
||||
)
|
||||
|
||||
pred_x0 = (x - (1 - a_t) ** 0.5 * e_t) / a_t.sqrt()
|
||||
beta_prod_t = 1 - alpha_prod_t
|
||||
|
||||
dir_xt = (1.0 - a_prev).sqrt() * e_t
|
||||
# 3. compute predicted original sample from predicted noise also called
|
||||
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
||||
if self.config.prediction_type == "epsilon":
|
||||
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
||||
pred_epsilon = model_output
|
||||
elif self.config.prediction_type == "sample":
|
||||
pred_original_sample = model_output
|
||||
pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
|
||||
elif self.config.prediction_type == "v_prediction":
|
||||
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
|
||||
pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
|
||||
else:
|
||||
raise ValueError(
|
||||
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
|
||||
" `v_prediction`"
|
||||
)
|
||||
|
||||
prev_sample = a_prev.sqrt() * pred_x0 + dir_xt
|
||||
# 4. Clip or threshold "predicted x_0"
|
||||
if self.config.clip_sample:
|
||||
pred_original_sample = pred_original_sample.clamp(
|
||||
-self.config.clip_sample_range, self.config.clip_sample_range
|
||||
)
|
||||
|
||||
# 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
||||
pred_sample_direction = (1 - alpha_prod_t_prev) ** (0.5) * pred_epsilon
|
||||
|
||||
# 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
||||
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
|
||||
|
||||
if not return_dict:
|
||||
return (prev_sample, pred_x0)
|
||||
return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_x0)
|
||||
return (prev_sample, pred_original_sample)
|
||||
return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
|
||||
|
||||
def __len__(self):
|
||||
return self.config.num_train_timesteps
|
||||
|
|
|
@ -347,7 +347,6 @@ class InversionPipelineSlowTests(unittest.TestCase):
|
|||
pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained(
|
||||
"CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16
|
||||
)
|
||||
pipe.inverse_scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
||||
pipe.inverse_scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config)
|
||||
|
||||
caption = "a photography of a cat with flowers"
|
||||
|
@ -366,6 +365,28 @@ class InversionPipelineSlowTests(unittest.TestCase):
|
|||
|
||||
assert np.abs(expected_slice - image_slice.cpu().numpy()).max() < 5e-2
|
||||
|
||||
def test_stable_diffusion_2_pix2pix_inversion(self):
|
||||
pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-2-1", safety_checker=None, torch_dtype=torch.float16
|
||||
)
|
||||
pipe.inverse_scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config)
|
||||
|
||||
caption = "a photography of a cat with flowers"
|
||||
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
||||
pipe.enable_model_cpu_offload()
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
generator = torch.manual_seed(0)
|
||||
output = pipe.invert(caption, image=self.raw_image, generator=generator, num_inference_steps=10)
|
||||
inv_latents = output[0]
|
||||
|
||||
image_slice = inv_latents[0, -3:, -3:, -1].flatten()
|
||||
|
||||
assert inv_latents.shape == (1, 4, 64, 64)
|
||||
expected_slice = np.array([0.7515, -0.2397, 0.4922, -0.9736, -0.7031, 0.4846, -1.0781, 1.1309, -0.6973])
|
||||
|
||||
assert np.abs(expected_slice - image_slice.cpu().numpy()).max() < 5e-2
|
||||
|
||||
def test_stable_diffusion_pix2pix_full(self):
|
||||
# numpy array of https://huggingface.co/datasets/hf-internal-testing/diffusers-images/blob/main/pix2pix/dog.png
|
||||
expected_image = load_numpy(
|
||||
|
@ -375,7 +396,6 @@ class InversionPipelineSlowTests(unittest.TestCase):
|
|||
pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained(
|
||||
"CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16
|
||||
)
|
||||
pipe.inverse_scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
||||
pipe.inverse_scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config)
|
||||
|
||||
caption = "a photography of a cat with flowers"
|
||||
|
@ -407,3 +427,44 @@ class InversionPipelineSlowTests(unittest.TestCase):
|
|||
|
||||
max_diff = np.abs(expected_image - image).mean()
|
||||
assert max_diff < 0.05
|
||||
|
||||
def test_stable_diffusion_2_pix2pix_full(self):
|
||||
# numpy array of https://huggingface.co/datasets/hf-internal-testing/diffusers-images/blob/main/pix2pix/dog_2.png
|
||||
expected_image = load_numpy(
|
||||
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/dog_2.npy"
|
||||
)
|
||||
|
||||
pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-2-1", safety_checker=None, torch_dtype=torch.float16
|
||||
)
|
||||
pipe.inverse_scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config)
|
||||
|
||||
caption = "a photography of a cat with flowers"
|
||||
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
||||
pipe.enable_model_cpu_offload()
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
generator = torch.manual_seed(0)
|
||||
output = pipe.invert(caption, image=self.raw_image, generator=generator)
|
||||
inv_latents = output[0]
|
||||
|
||||
source_prompts = 4 * ["a cat sitting on the street", "a cat playing in the field", "a face of a cat"]
|
||||
target_prompts = 4 * ["a dog sitting on the street", "a dog playing in the field", "a face of a dog"]
|
||||
|
||||
source_embeds = pipe.get_embeds(source_prompts)
|
||||
target_embeds = pipe.get_embeds(target_prompts)
|
||||
|
||||
image = pipe(
|
||||
caption,
|
||||
source_embeds=source_embeds,
|
||||
target_embeds=target_embeds,
|
||||
num_inference_steps=125,
|
||||
cross_attention_guidance_amount=0.015,
|
||||
generator=generator,
|
||||
latents=inv_latents,
|
||||
negative_prompt=caption,
|
||||
output_type="np",
|
||||
).images
|
||||
|
||||
max_diff = np.abs(expected_image - image).mean()
|
||||
assert max_diff < 0.05
|
||||
|
|
Loading…
Reference in New Issue