improve ddim comments
This commit is contained in:
parent
cbb19ee84e
commit
f035fbfba7
|
@ -30,43 +30,43 @@ class DDPM(DiffusionPipeline):
|
|||
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
self.unet.to(torch_device)
|
||||
# 1. Sample gaussian noise
|
||||
|
||||
# Sample gaussian noise to begin loop
|
||||
image = self.noise_scheduler.sample_noise(
|
||||
(batch_size, self.unet.in_channels, self.unet.resolution, self.unet.resolution),
|
||||
device=torch_device,
|
||||
generator=generator,
|
||||
)
|
||||
for t in tqdm.tqdm(reversed(range(len(self.noise_scheduler))), total=len(self.noise_scheduler)):
|
||||
# i) define coefficients for time step t
|
||||
clipped_image_coeff = 1 / torch.sqrt(self.noise_scheduler.get_alpha_prod(t))
|
||||
clipped_noise_coeff = torch.sqrt(1 / self.noise_scheduler.get_alpha_prod(t) - 1)
|
||||
image_coeff = (
|
||||
(1 - self.noise_scheduler.get_alpha_prod(t - 1))
|
||||
* torch.sqrt(self.noise_scheduler.get_alpha(t))
|
||||
/ (1 - self.noise_scheduler.get_alpha_prod(t))
|
||||
)
|
||||
clipped_coeff = (
|
||||
torch.sqrt(self.noise_scheduler.get_alpha_prod(t - 1))
|
||||
* self.noise_scheduler.get_beta(t)
|
||||
/ (1 - self.noise_scheduler.get_alpha_prod(t))
|
||||
)
|
||||
|
||||
# ii) predict noise residual
|
||||
for t in tqdm.tqdm(reversed(range(len(self.noise_scheduler))), total=len(self.noise_scheduler)):
|
||||
# 1. predict noise residual
|
||||
with torch.no_grad():
|
||||
noise_residual = self.unet(image, t)
|
||||
|
||||
# iii) compute predicted image from residual
|
||||
# See 2nd formula at https://github.com/hojonathanho/diffusion/issues/5#issue-896554416 for comparison
|
||||
pred_mean = clipped_image_coeff * image - clipped_noise_coeff * noise_residual
|
||||
pred_mean = torch.clamp(pred_mean, -1, 1)
|
||||
prev_image = clipped_coeff * pred_mean + image_coeff * image
|
||||
# 2. compute alphas, betas
|
||||
alpha_prod_t = self.noise_scheduler.get_alpha_prod(t)
|
||||
alpha_prod_t_prev = self.noise_scheduler.get_alpha_prod(t - 1)
|
||||
beta_prod_t = 1 - alpha_prod_t
|
||||
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
||||
|
||||
# iv) sample variance
|
||||
# 3. compute predicted image from residual
|
||||
# See 2nd formula at https://github.com/hojonathanho/diffusion/issues/5#issue-896554416 for comparison
|
||||
# First: Compute inner formula
|
||||
pred_mean = (1 / alpha_prod_t.sqrt()) * (image - beta_prod_t.sqrt() * noise_residual)
|
||||
# Second: Clip
|
||||
pred_mean = torch.clamp(pred_mean, -1, 1)
|
||||
# Third: Compute outer coefficients
|
||||
pred_mean_coeff = (alpha_prod_t_prev.sqrt() * self.noise_scheduler.get_beta(t)) / beta_prod_t
|
||||
image_coeff = (beta_prod_t_prev * self.noise_scheduler.get_alpha(t).sqrt()) / beta_prod_t
|
||||
# Fourth: Compute outer formula
|
||||
prev_image = pred_mean_coeff * pred_mean + image_coeff * image
|
||||
|
||||
# 4. sample variance
|
||||
prev_variance = self.noise_scheduler.sample_variance(
|
||||
t, prev_image.shape, device=torch_device, generator=generator
|
||||
)
|
||||
|
||||
# v) sample x_{t-1} ~ N(prev_image, prev_variance)
|
||||
# 5. sample x_{t-1} ~ N(prev_image, prev_variance) = add variance to predicted image
|
||||
sampled_prev_image = prev_image + prev_variance
|
||||
image = sampled_prev_image
|
||||
|
||||
|
|
Loading…
Reference in New Issue