Commit Graph

19 Commits

Author SHA1 Message Date
regisss 2579d42158
Add doc for Stable Diffusion on Habana Gaudi (#1496)
* Add doc for Stable Diffusion on Habana Gaudi

* Make style

* Add benchmark

* Center-align columns in the benchmark table
2022-12-01 15:43:48 +01:00
Ilmari Heikkinen c28d3c82ce
StableDiffusion: Decode latents separately to run larger batches (#1150)
* StableDiffusion: Decode latents separately to run larger batches

* Move VAE sliced decode under enable_vae_sliced_decode and vae.enable_sliced_decode

* Rename sliced_decode to slicing

* fix whitespace

* fix quality check and repository consistency

* VAE slicing tests and documentation

* API doc hooks for VAE slicing

* reformat vae slicing tests

* Skip VAE slicing for one-image batches

* Documentation tweaks for VAE slicing

Co-authored-by: Ilmari Heikkinen <ilmari@fhtr.org>
2022-11-29 13:28:14 +01:00
Pedro Cuenca 118c5be94a
Docs: Do not require PyTorch nightlies (#1123)
Do not require PyTorch nightlies.
2022-11-03 18:17:23 +01:00
MatthieuTPHR 98c42134a5
Up to 2x speedup on GPUs using memory efficient attention (#532)
* 2x speedup using memory efficient attention

* remove einops dependency

* Swap K, M in op instantiation

* Simplify code, remove unnecessary maybe_init call and function, remove unused self.scale parameter

* make xformers a soft dependency

* remove one-liner functions

* change one letter variable to appropriate names

* Remove Env variable dependency, remove MemoryEfficientCrossAttention class and use enable_xformers_memory_efficient_attention method

* Add memory efficient attention toggle to img2img and inpaint pipelines

* Clearer management of xformers' availability

* update optimizations markdown to add info about memory efficient attention

* add benchmarks for TITAN RTX

* More detailed explanation of how the mem eff benchmark were ran

* Removing autocast from optimization markdown

* import_utils: import torch only if is available

Co-authored-by: Nouamane Tazi <nouamane98@gmail.com>
2022-11-02 10:29:06 +01:00
Minwoo Byeon fc0ca47456
Fix speedup ratio in fp16.mdx (#837) 2022-10-29 09:26:23 +02:00
Pi Esposito de00c63217
Document sequential CPU offload method on Stable Diffusion pipeline (#1024)
* document cpu offloading method

* address review comments

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-10-27 16:52:21 +02:00
Pedro Cuenca 3d02c92187
mps changes for PyTorch 1.13 (#926)
* Docs: refer to pre-RC version of PyTorch 1.13.0.

* Remove temporary workaround for unavailable op.

* Update comment to make it less ambiguous.

* Remove use of contiguous in mps.

It appears to not longer be necessary.

* Special case: use einsum for much better performance in mps

* Update mps docs.

* Minor doc update.

* Accept suggestion

Co-authored-by: Anton Lozhkov <anton@huggingface.co>

Co-authored-by: Anton Lozhkov <anton@huggingface.co>
2022-10-25 16:41:51 +02:00
apolinario 8aac1f99d7
v1-5 docs updates (#921)
* Update README.md

Additionally add FLAX so the model card can be slimmer and point to this page

* Find and replace all

* v-1-5 -> v1-5

* revert test changes

* Update README.md

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update docs/source/quicktour.mdx

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update README.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/quicktour.mdx

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update README.md

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Revert certain references to v1-5

* Docs changes

* Apply suggestions from code review

Co-authored-by: apolinario <joaopaulo.passos+multimodal@gmail.com>
Co-authored-by: anton-l <anton@huggingface.co>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
2022-10-24 22:50:23 +02:00
Pedro Cuenca 24b8b5cf5e
`mps`: Alternative implementation for `repeat_interleave` (#766)
* mps: alt. implementation for repeat_interleave

* style

* Bump mps version of PyTorch in the documentation.

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Simplify: do not check for device.

* style

* Fix repeat dimensions:

- The unconditional embeddings are always created from a single prompt.
- I was shadowing the batch_size var.

* Split long lines as suggested by Suraj.

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
2022-10-11 20:30:09 +02:00
Patrick von Platen 4deb16e830
[Docs] Advertise fp16 instead of autocast (#740)
up
2022-10-05 22:20:53 +02:00
Patrick von Platen 78744b6a8f
No more use_auth_token=True (#733)
* up

* uP

* uP

* make style

* Apply suggestions from code review

* up

* finish
2022-10-05 17:16:15 +02:00
Yuta Hayashibe 7e92c5bc73
Fix typos (#718)
* Fix typos

* Update examples/dreambooth/train_dreambooth.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-04 15:22:14 +02:00
Nouamane Tazi daa22050c7
[docs] fix table in fp16.mdx (#683) 2022-09-30 15:15:22 +02:00
Nouamane Tazi 9ebaea545f
Optimize Stable Diffusion (#371)
* initial commit

* make UNet stream capturable

* try to fix noise_pred value

* remove cuda graph and keep NB

* non blocking unet with PNDMScheduler

* make timesteps np arrays for pndm scheduler
because lists don't get formatted to tensors in `self.set_format`

* make max async in pndm

* use channel last format in unet

* avoid moving timesteps device in each unet call

* avoid memcpy op in `get_timestep_embedding`

* add `channels_last` kwarg to `DiffusionPipeline.from_pretrained`

* update TODO

* replace `channels_last` kwarg with `memory_format` for more generality

* revert the channels_last changes to leave it for another PR

* remove non_blocking when moving input ids to device

* remove blocking from all .to() operations at beginning of pipeline

* fix merging

* fix merging

* model can run in other precisions without autocast

* attn refactoring

* Revert "attn refactoring"

This reverts commit 0c70c0e189cd2c4d8768274c9fcf5b940ee310fb.

* remove restriction to run conv_norm in fp32

* use `baddbmm` instead of `matmul`for better in attention for better perf

* removing all reshapes to test perf

* Revert "removing all reshapes to test perf"

This reverts commit 006ccb8a8c6bc7eb7e512392e692a29d9b1553cd.

* add shapes comments

* hardcore whats needed for jitting

* Revert "hardcore whats needed for jitting"

This reverts commit 2fa9c698eae2890ac5f8e367ca80532ecf94df9a.

* Revert "remove restriction to run conv_norm in fp32"

This reverts commit cec592890c32da3d1b78d38b49e4307aedf459b9.

* revert using baddmm in attention's forward

* cleanup comment

* remove restriction to run conv_norm in fp32. no quality loss was noticed

This reverts commit cc9bc1339c998ebe9e7d733f910c6d72d9792213.

* add more optimizations techniques to docs

* Revert "add shapes comments"

This reverts commit 31c58eadb8892f95478cdf05229adf678678c5f4.

* apply suggestions

* make quality

* apply suggestions

* styling

* `scheduler.timesteps` are now arrays so we dont need .to()

* remove useless .type()

* use mean instead of max in `test_stable_diffusion_inpaint_pipeline_k_lms`

* move scheduler timestamps to correct device if tensors

* add device to `set_timesteps` in LMSD scheduler

* `self.scheduler.set_timesteps` now uses device arg for schedulers that accept it

* quick fix

* styling

* remove kwargs from schedulers `set_timesteps`

* revert to using max in K-LMS inpaint pipeline test

* Revert "`self.scheduler.set_timesteps` now uses device arg for schedulers that accept it"

This reverts commit 00d5a51e5c20d8d445c8664407ef29608106d899.

* move timesteps to correct device before loop in SD pipeline

* apply previous fix to other SD pipelines

* UNet now accepts tensor timesteps even on wrong device, to avoid errors
- it shouldnt affect performance if timesteps are alrdy on correct device
- it does slow down performance if they're on the wrong device

* fix pipeline when timesteps are arrays with strides
2022-09-30 09:49:13 +02:00
Pedro Cuenca 1a79969d23
Initial ONNX doc (TODO: Installation) (#426) 2022-09-08 16:46:24 +02:00
Patrick von Platen 98f346835a
[Docs] Minor fixes in optimization section (#420)
* uP

* more
2022-09-08 13:13:46 +02:00
Pedro Cuenca c29d81c3e3
Docs: fp16 page (#404)
* Initial version of `fp16` page.

* Fix typo in README.

* Change titles of fp16 section in toctree.

* PR suggestion

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* PR suggestion

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Clarify attention slicing is useful even for batches of 1

Explained by @patrickvonplaten after a suggestion by @keturn.

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Do not talk about `batches` in `enable_attention_slicing`.

* Use Tip (just for fun), add link to method.

* Comment about fp16 results looking the same as float32 in practice.

* Style: docstring line wrapping.

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-09-08 09:17:51 +02:00
Pedro Cuenca 492f5c9a6c
Docs: optimization / special hardware (#390)
Add mps documentation.
2022-09-07 16:27:14 +02:00
Patrick von Platen 5a38033de4
[Docs] Let's go (#385) 2022-09-07 11:31:13 +02:00