Commit Graph

4 Commits

Author SHA1 Message Date
apolinario 7bd50cabaf
Add colab links to textual inversion (#375) 2022-09-06 22:23:02 +05:30
Patrick von Platen cc59b05635
[ModelOutputs] Replace dict outputs with Dict/Dataclass and allow to return tuples (#334)
* add outputs for models

* add for pipelines

* finish schedulers

* better naming

* adapt tests as well

* replace dict access with . access

* make schedulers works

* finish

* correct readme

* make  bcp compatible

* up

* small fix

* finish

* more fixes

* more fixes

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update src/diffusers/models/vae.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Adapt model outputs

* Apply more suggestions

* finish examples

* correct

Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-09-05 14:49:26 +02:00
Suraj Patil 30e7c78ac3
Update README.md 2022-09-02 14:29:27 +05:30
Suraj Patil d0d3e24ec1
Textual inversion (#266)
* add textual inversion script

* make the loop work

* make coarse_loss optional

* save pipeline after training

* add arg pretrained_model_name_or_path

* fix saving

* fix gradient_accumulation_steps

* style

* fix progress bar steps

* scale lr

* add argument to accept style

* remove unused args

* scale lr using num gpus

* load tokenizer using args

* add checks when converting init token to id

* improve commnets and style

* document args

* more cleanup

* fix default adamw arsg

* TextualInversionWrapper -> CLIPTextualInversionWrapper

* fix tokenizer loading

* Use the CLIPTextModel instead of wrapper

* clean dataset

* remove commented code

* fix accessing grads for multi-gpu

* more cleanup

* fix saving on multi-GPU

* init_placeholder_token_embeds

* add seed

* fix flip

* fix multi-gpu

* add utility methods in wrapper

* remove ipynb

* don't use wrapper

* dont pass vae an dunet to accelerate prepare

* bring back accelerator.accumulate

* scale latents

* use only one progress bar for steps

* push_to_hub at the end of training

* remove unused args

* log some important stats

* store args in tensorboard

* pretty comments

* save the trained embeddings

* mobe the script up

* add requirements file

* more cleanup

* fux typo

* begin readme

* style -> learnable_property

* keep vae and unet in eval mode

* address review comments

* address more comments

* removed unused args

* add train command in readme

* update readme
2022-09-02 14:23:52 +05:30