* increase the precision of slice-based tests and make the default test case easier to single out
* increase precision of unit tests which already rely on float comparisons
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* make accelerate hard dep
* default fast init
* move params to cpu when device map is None
* handle device_map=None
* handle torch < 1.9
* remove device_map="auto"
* style
* add accelerate in torch extra
* remove accelerate from extras["test"]
* raise an error if torch is available but not accelerate
* update installation docs
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* improve defautl loading speed even further, allow disabling fats loading
* address review comments
* adapt the tests
* fix test_stable_diffusion_fast_load
* fix test_read_init
* temp fix for dummy checks
* Trigger Build
* Apply suggestions from code review
Co-authored-by: Anton Lozhkov <anton@huggingface.co>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Anton Lozhkov <anton@huggingface.co>
* Changes for VQ-diffusion VQVAE
Add specify dimension of embeddings to VQModel:
`VQModel` will by default set the dimension of embeddings to the number
of latent channels. The VQ-diffusion VQVAE has a smaller
embedding dimension, 128, than number of latent channels, 256.
Add AttnDownEncoderBlock2D and AttnUpDecoderBlock2D to the up and down
unet block helpers. VQ-diffusion's VQVAE uses those two block types.
* Changes for VQ-diffusion transformer
Modify attention.py so SpatialTransformer can be used for
VQ-diffusion's transformer.
SpatialTransformer:
- Can now operate over discrete inputs (classes of vector embeddings) as well as continuous.
- `in_channels` was made optional in the constructor so two locations where it was passed as a positional arg were moved to kwargs
- modified forward pass to take optional timestep embeddings
ImagePositionalEmbeddings:
- added to provide positional embeddings to discrete inputs for latent pixels
BasicTransformerBlock:
- norm layers were made configurable so that the VQ-diffusion could use AdaLayerNorm with timestep embeddings
- modified forward pass to take optional timestep embeddings
CrossAttention:
- now may optionally take a bias parameter for its query, key, and value linear layers
FeedForward:
- Internal layers are now configurable
ApproximateGELU:
- Activation function in VQ-diffusion's feedforward layer
AdaLayerNorm:
- Norm layer modified to incorporate timestep embeddings
* Add VQ-diffusion scheduler
* Add VQ-diffusion pipeline
* Add VQ-diffusion convert script to diffusers
* Add VQ-diffusion dummy objects
* Add VQ-diffusion markdown docs
* Add VQ-diffusion tests
* some renaming
* some fixes
* more renaming
* correct
* fix typo
* correct weights
* finalize
* fix tests
* Apply suggestions from code review
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
* Apply suggestions from code review
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* finish
* finish
* up
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* feat: add repaint
* fix: fix quality check with `make fix-copies`
* fix: remove old unnecessary arg
* chore: change default to DDPM (looks better in experiments)
* ".to(device)" changed to "device="
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
* make generator device-specific
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
* make generator device-specific and change shape
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
* fix: add preprocessing for image and mask
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
* fix: update test
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
* Update src/diffusers/pipelines/repaint/pipeline_repaint.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Add docs and examples
* Fix toctree
Co-authored-by: fja <fja@zurich.ibm.com>
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Anton Lozhkov <anton@huggingface.co>
* Fix equality test for ddim and ddpm
* add docs for use_clipped_model_output in DDIM
* fix inline comment
* reorder imports in test_pipelines.py
* Ignore use_clipped_model_output if scheduler doesn't take it
* improve test precision
get tests passing with greater precision using lewington images
* make old numpy load function a wrapper around a more flexible numpy loading function
* adhere to black formatting
* add more black formatting
* adhere to isort
* loosen precision and replace path
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* [Better scheduler docs] Improve usage examples of schedulers
* finish
* fix warnings and add test
* finish
* more replacements
* adapt fast tests hf token
* correct more
* Apply suggestions from code review
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* Integrate compatibility with euler
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* Add failing test for #940.
* Do not use torch.float64 in mps.
* style
* Temporarily skip add_noise for IPNDMScheduler.
Until #990 is addressed.
* Fix additional float64 error in mps.
* Improve add_noise test
* Slight edit – I think it's clearer this way.
* add method to enable cuda with minimal gpu usage to stable diffusion
* add test to minimal cuda memory usage
* ensure all models but unet are onn torch.float32
* move to cpu_offload along with minor internal changes to make it work
* make it test against accelerate master branch
* coming back, its official: I don't know how to make it test againt the master branch from accelerate
* make it install accelerate from master on tests
* go back to accelerate>=0.11
* undo prettier formatting on yml files
* undo prettier formatting on yml files againn
* start
* add more logic
* Update src/diffusers/models/unet_2d_condition_flax.py
* match weights
* up
* make model work
* making class more general, fixing missed file rename
* small fix
* make new conversion work
* up
* finalize conversion
* up
* first batch of variable renamings
* remove c and c_prev var names
* add mid and out block structure
* add pipeline
* up
* finish conversion
* finish
* upload
* more fixes
* Apply suggestions from code review
* add attr
* up
* uP
* up
* finish tests
* finish
* uP
* finish
* fix test
* up
* naming consistency in tests
* Apply suggestions from code review
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Nathan Lambert <nathan@huggingface.co>
Co-authored-by: Anton Lozhkov <anton@huggingface.co>
* remove hardcoded 16
* Remove bogus
* fix some stuff
* finish
* improve logging
* docs
* upload
Co-authored-by: Nathan Lambert <nol@berkeley.edu>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Nathan Lambert <nathan@huggingface.co>
Co-authored-by: Anton Lozhkov <anton@huggingface.co>
* begin pipe
* add new pipeline
* add tests
* correct fast test
* up
* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py
* Update tests/test_pipelines.py
* up
* up
* make style
* add fp16 test
* doc, comments
* up
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Anton Lozhkov <anton@huggingface.co>
* [CI] Add Apple M1 tests
* setup-python
* python build
* conda install
* remove branch
* only 3.8 is built for osx-arm
* try fetching prebuilt tokenizers
* use user cache
* update shells
* Reports and cleanup
* -> MPS
* Disable parallel tests
* Better naming
* investigate worker crash
* return xdist
* restart
* num_workers=2
* still crashing?
* faulthandler for segfaults
* faulthandler for segfaults
* remove restarts, stop on segfault
* torch version
* change installation order
* Use pre-RC version of PyTorch.
To be updated when it is released.
* Skip crashing test on MPS, add new one that works.
* Skip cuda tests in mps device.
* Actually use generator in test.
I think this was a typo.
* make style
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* Bump to 0.6.0.dev0
* Deprecate tensor_format and .samples
* style
* upd
* upd
* style
* sample -> images
* Update src/diffusers/schedulers/scheduling_ddpm.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/diffusers/schedulers/scheduling_ddim.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/diffusers/schedulers/scheduling_karras_ve.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/diffusers/schedulers/scheduling_lms_discrete.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/diffusers/schedulers/scheduling_pndm.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/diffusers/schedulers/scheduling_sde_ve.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/diffusers/schedulers/scheduling_sde_vp.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Give more customizable options for safety checker
* Apply suggestions from code review
* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py
* Finish
* make style
* Apply suggestions from code review
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* up
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* [Dummy imports] Better error message
* Test: load pipeline with LMS scheduler.
Fails with a cryptic message if scipy is not installed.
* Correct
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* pass norm_num_groups param and add tests
* set resnet_groups for FlaxUNetMidBlock2D
* fixed docstrings
* fixed typo
* using is_flax_available util and created require_flax decorator
* add accelerate to load models with smaller memory footprint
* remove low_cpu_mem_usage as it is reduntant
* move accelerate init weights context to modelling utils
* add test to ensure results are the same when loading with accelerate
* add tests to ensure ram usage gets lower when using accelerate
* move accelerate logic to single snippet under modelling utils and remove it from configuration utils
* format code using to pass quality check
* fix imports with isor
* add accelerate to test extra deps
* only import accelerate if device_map is set to auto
* move accelerate availability check to diffusers import utils
* format code
* add device map to pipeline abstraction
* lint it to pass PR quality check
* fix class check to use accelerate when using diffusers ModelMixin subclasses
* use low_cpu_mem_usage in transformers if device_map is not available
* NoModuleLayer
* comment out tests
* up
* uP
* finish
* Update src/diffusers/pipelines/stable_diffusion/safety_checker.py
* finish
* uP
* make style
Co-authored-by: Pi Esposito <piero.skywalker@gmail.com>
* handle dtype in vae and image2image pipeline
* fix inpaint in fp16
* dtype should be handled in add_noise
* style
* address review comments
* add simple fast tests to check fp16
* fix test name
* put mask in fp16
This is to ensure that the final latent slices stay somewhat consistent as more changes are introduced into the library.
Signed-off-by: James R T <jamestiotio@gmail.com>
Signed-off-by: James R T <jamestiotio@gmail.com>
* Swap fp16 error to warning
Also remove the associated test
* Formatting
* warn -> warning
* Update src/diffusers/pipeline_utils.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* make style
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Raise an error when moving an fp16 pipeline to CPU
* Raise an error when moving an fp16 pipeline to CPU
* style
* Update src/diffusers/pipeline_utils.py
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* Update src/diffusers/pipeline_utils.py
Co-authored-by: Suraj Patil <surajp815@gmail.com>
* Improve the message
* cuda
* Update tests/test_pipelines.py
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
* init
* improve add_noise
* [debug start] run slow test
* [debug end]
* quick revert
* Add docstrings and warnings + API tests
* Make the warning less spammy
* add accelerate to load models with smaller memory footprint
* remove low_cpu_mem_usage as it is reduntant
* move accelerate init weights context to modelling utils
* add test to ensure results are the same when loading with accelerate
* add tests to ensure ram usage gets lower when using accelerate
* move accelerate logic to single snippet under modelling utils and remove it from configuration utils
* format code using to pass quality check
* fix imports with isor
* add accelerate to test extra deps
* only import accelerate if device_map is set to auto
* move accelerate availability check to diffusers import utils
* format code
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Add callback parameters for Stable Diffusion pipelines
Signed-off-by: James R T <jamestiotio@gmail.com>
* Lint code with `black --preview`
Signed-off-by: James R T <jamestiotio@gmail.com>
* Refactor callback implementation for Stable Diffusion pipelines
* Fix missing imports
Signed-off-by: James R T <jamestiotio@gmail.com>
* Fix documentation format
Signed-off-by: James R T <jamestiotio@gmail.com>
* Add kwargs parameter to standardize with other pipelines
Signed-off-by: James R T <jamestiotio@gmail.com>
* Modify Stable Diffusion pipeline callback parameters
Signed-off-by: James R T <jamestiotio@gmail.com>
* Remove useless imports
Signed-off-by: James R T <jamestiotio@gmail.com>
* Change types for timestep and onnx latents
* Fix docstring style
* Return decode_latents and run_safety_checker back into __call__
* Remove unused imports
* Add intermediate state tests for Stable Diffusion pipelines
Signed-off-by: James R T <jamestiotio@gmail.com>
* Fix intermediate state tests for Stable Diffusion pipelines
Signed-off-by: James R T <jamestiotio@gmail.com>
Signed-off-by: James R T <jamestiotio@gmail.com>
* Allow resolutions that are not multiples of 64
* ran black
* fix bug
* add test
* more explanation
* more comments
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* pytorch only schedulers
* fix style
* remove match_shape
* pytorch only ddpm
* remove SchedulerMixin
* remove numpy from karras_ve
* fix types
* remove numpy from lms_discrete
* remove numpy from pndm
* fix typo
* remove mixin and numpy from sde_vp and ve
* remove remaining tensor_format
* fix style
* sigmas has to be torch tensor
* removed set_format in readme
* remove set format from docs
* remove set_format from pipelines
* update tests
* fix typo
* continue to use mixin
* fix imports
* removed unsed imports
* match shape instead of assuming image shapes
* remove import typo
* update call to add_noise
* use math instead of numpy
* fix t_index
* removed commented out numpy tests
* timesteps needs to be discrete
* cast timesteps to int in flax scheduler too
* fix device mismatch issue
* small fix
* Update src/diffusers/schedulers/scheduling_pndm.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* add grad ckpt to downsample blocks
* make it work
* don't pass gradient_checkpointing to upsample block
* add tests for UNet2DConditionModel
* add test_gradient_checkpointing
* add gradient_checkpointing for up and down blocks
* add functions to enable and disable grad ckpt
* remove the forward argument
* better naming
* make supports_gradient_checkpointing private
* Unify offset configuration in DDIM and PNDM schedulers
* Format
Add missing variables
* Fix pipeline test
* Update src/diffusers/schedulers/scheduling_ddim.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Default set_alpha_to_one to false
* Format
* Add tests
* Format
* add deprecation warning
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Fix typos
* Add a typo check action
* Fix a bug
* Changed to manual typo check currently
Ref: https://github.com/huggingface/diffusers/pull/483#pullrequestreview-1104468010
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
* Removed a confusing message
* Renamed "nin_shortcut" to "in_shortcut"
* Add memo about NIN
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
* beta never changes removed from state
* fix typos in docs
* removed unused var
* initial ddim flax scheduler
* import
* added dummy objects
* fix style
* fix typo
* docs
* fix typo in comment
* set return type
* added flax ddom
* fix style
* remake
* pass PRNG key as argument and split before use
* fix doc string
* use config
* added flax Karras VE scheduler
* make style
* fix dummy
* fix ndarray type annotation
* replace returns a new state
* added lms_discrete scheduler
* use self.config
* add_noise needs state
* use config
* use config
* docstring
* added flax score sde ve
* fix imports
* fix typos