## Training examples
### Installing the dependencies
Before running the scipts, make sure to install the library's training dependencies:
```bash
pip install diffusers[training] accelerate datasets
```
### Unconditional Flowers
The command to train a DDPM UNet model on the Oxford Flowers dataset:
```bash
accelerate launch train_unconditional.py \
--dataset="huggan/flowers-102-categories" \
--resolution=64 \
--output_dir="ddpm-ema-flowers-64" \
--train_batch_size=16 \
--num_epochs=100 \
--gradient_accumulation_steps=1 \
--learning_rate=1e-4 \
--lr_warmup_steps=500 \
--mixed_precision=no \
--push_to_hub
```
A full training run takes 2 hours on 4xV100 GPUs.
### Unconditional Pokemon
The command to train a DDPM UNet model on the Pokemon dataset:
```bash
accelerate launch train_unconditional.py \
--dataset="huggan/pokemon" \
--resolution=64 \
--output_dir="ddpm-ema-pokemon-64" \
--train_batch_size=16 \
--num_epochs=100 \
--gradient_accumulation_steps=1 \
--learning_rate=1e-4 \
--lr_warmup_steps=500 \
--mixed_precision=no \
--push_to_hub
```
A full training run takes 2 hours on 4xV100 GPUs.