# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch from diffusers import Transformer2DModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from ...test_pipelines_common import PipelineTesterMixin torch.backends.cuda.matmul.allow_tf32 = False class VQDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def num_embed(self): return 12 @property def num_embeds_ada_norm(self): return 12 @property def text_embedder_hidden_size(self): return 32 @property def dummy_vqvae(self): torch.manual_seed(0) model = VQModel( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=3, num_vq_embeddings=self.num_embed, vq_embed_dim=3, ) return model @property def dummy_tokenizer(self): tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def dummy_text_encoder(self): torch.manual_seed(0) config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModel(config) @property def dummy_transformer(self): torch.manual_seed(0) height = 12 width = 12 model_kwargs = { "attention_bias": True, "cross_attention_dim": 32, "attention_head_dim": height * width, "num_attention_heads": 1, "num_vector_embeds": self.num_embed, "num_embeds_ada_norm": self.num_embeds_ada_norm, "norm_num_groups": 32, "sample_size": width, "activation_fn": "geglu-approximate", } model = Transformer2DModel(**model_kwargs) return model def test_vq_diffusion(self): device = "cpu" vqvae = self.dummy_vqvae text_encoder = self.dummy_text_encoder tokenizer = self.dummy_tokenizer transformer = self.dummy_transformer scheduler = VQDiffusionScheduler(self.num_embed) learned_classifier_free_sampling_embeddings = LearnedClassifierFreeSamplingEmbeddings(learnable=False) pipe = VQDiffusionPipeline( vqvae=vqvae, text_encoder=text_encoder, tokenizer=tokenizer, transformer=transformer, scheduler=scheduler, learned_classifier_free_sampling_embeddings=learned_classifier_free_sampling_embeddings, ) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) prompt = "teddy bear playing in the pool" generator = torch.Generator(device=device).manual_seed(0) output = pipe([prompt], generator=generator, num_inference_steps=2, output_type="np") image = output.images generator = torch.Generator(device=device).manual_seed(0) image_from_tuple = pipe( [prompt], generator=generator, output_type="np", return_dict=False, num_inference_steps=2 )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) expected_slice = np.array([0.6583, 0.6410, 0.5325, 0.5635, 0.5563, 0.4234, 0.6008, 0.5491, 0.4880]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def test_vq_diffusion_classifier_free_sampling(self): device = "cpu" vqvae = self.dummy_vqvae text_encoder = self.dummy_text_encoder tokenizer = self.dummy_tokenizer transformer = self.dummy_transformer scheduler = VQDiffusionScheduler(self.num_embed) learned_classifier_free_sampling_embeddings = LearnedClassifierFreeSamplingEmbeddings( learnable=True, hidden_size=self.text_embedder_hidden_size, length=tokenizer.model_max_length ) pipe = VQDiffusionPipeline( vqvae=vqvae, text_encoder=text_encoder, tokenizer=tokenizer, transformer=transformer, scheduler=scheduler, learned_classifier_free_sampling_embeddings=learned_classifier_free_sampling_embeddings, ) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) prompt = "teddy bear playing in the pool" generator = torch.Generator(device=device).manual_seed(0) output = pipe([prompt], generator=generator, num_inference_steps=2, output_type="np") image = output.images generator = torch.Generator(device=device).manual_seed(0) image_from_tuple = pipe( [prompt], generator=generator, output_type="np", return_dict=False, num_inference_steps=2 )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) expected_slice = np.array([0.6647, 0.6531, 0.5303, 0.5891, 0.5726, 0.4439, 0.6304, 0.5564, 0.4912]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class VQDiffusionPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_vq_diffusion_classifier_free_sampling(self): expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy" ) pipeline = VQDiffusionPipeline.from_pretrained("microsoft/vq-diffusion-ithq") pipeline = pipeline.to(torch_device) pipeline.set_progress_bar_config(disable=None) generator = torch.Generator(device=torch_device).manual_seed(0) output = pipeline( "teddy bear playing in the pool", num_images_per_prompt=1, generator=generator, output_type="np", ) image = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image).max() < 1e-2