# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import tempfile import unittest import numpy as np import torch from diffusers import ( BDDMPipeline, DDIMPipeline, DDIMScheduler, DDPMPipeline, DDPMScheduler, GlidePipeline, GlideSuperResUNetModel, GlideTextToImageUNetModel, GradTTSPipeline, GradTTSScheduler, LatentDiffusionPipeline, NCSNpp, PNDMPipeline, PNDMScheduler, ScoreSdeVePipeline, ScoreSdeVeScheduler, ScoreSdeVpPipeline, ScoreSdeVpScheduler, UNetGradTTSModel, UNetLDMModel, UNetModel, ) from diffusers.configuration_utils import ConfigMixin from diffusers.pipeline_utils import DiffusionPipeline from diffusers.pipelines.pipeline_bddm import DiffWave from diffusers.testing_utils import floats_tensor, slow, torch_device torch.backends.cuda.matmul.allow_tf32 = False class ConfigTester(unittest.TestCase): def test_load_not_from_mixin(self): with self.assertRaises(ValueError): ConfigMixin.from_config("dummy_path") def test_save_load(self): class SampleObject(ConfigMixin): config_name = "config.json" def __init__( self, a=2, b=5, c=(2, 5), d="for diffusion", e=[1, 3], ): self.register_to_config(a=a, b=b, c=c, d=d, e=e) obj = SampleObject() config = obj.config assert config["a"] == 2 assert config["b"] == 5 assert config["c"] == (2, 5) assert config["d"] == "for diffusion" assert config["e"] == [1, 3] with tempfile.TemporaryDirectory() as tmpdirname: obj.save_config(tmpdirname) new_obj = SampleObject.from_config(tmpdirname) new_config = new_obj.config # unfreeze configs config = dict(config) new_config = dict(new_config) assert config.pop("c") == (2, 5) # instantiated as tuple assert new_config.pop("c") == [2, 5] # saved & loaded as list because of json assert config == new_config class ModelTesterMixin: def test_from_pretrained_save_pretrained(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) model.eval() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) new_model = self.model_class.from_pretrained(tmpdirname) new_model.to(torch_device) with torch.no_grad(): image = model(**inputs_dict) new_image = new_model(**inputs_dict) max_diff = (image - new_image).abs().sum().item() self.assertLessEqual(max_diff, 5e-5, "Models give different forward passes") def test_determinism(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) model.eval() with torch.no_grad(): first = model(**inputs_dict) second = model(**inputs_dict) out_1 = first.cpu().numpy() out_2 = second.cpu().numpy() out_1 = out_1[~np.isnan(out_1)] out_2 = out_2[~np.isnan(out_2)] max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) def test_output(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) model.eval() with torch.no_grad(): output = model(**inputs_dict) self.assertIsNotNone(output) expected_shape = inputs_dict["x"].shape self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") def test_forward_signature(self): init_dict, _ = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["x", "timesteps"] self.assertListEqual(arg_names[:2], expected_arg_names) def test_model_from_config(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) model.eval() # test if the model can be loaded from the config # and has all the expected shape with tempfile.TemporaryDirectory() as tmpdirname: model.save_config(tmpdirname) new_model = self.model_class.from_config(tmpdirname) new_model.to(torch_device) new_model.eval() # check if all paramters shape are the same for param_name in model.state_dict().keys(): param_1 = model.state_dict()[param_name] param_2 = new_model.state_dict()[param_name] self.assertEqual(param_1.shape, param_2.shape) with torch.no_grad(): output_1 = model(**inputs_dict) output_2 = new_model(**inputs_dict) self.assertEqual(output_1.shape, output_2.shape) def test_training(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) model.train() output = model(**inputs_dict) noise = torch.randn((inputs_dict["x"].shape[0],) + self.get_output_shape).to(torch_device) loss = torch.nn.functional.mse_loss(output, noise) loss.backward() class UnetModelTests(ModelTesterMixin, unittest.TestCase): model_class = UNetModel @property def dummy_input(self): batch_size = 4 num_channels = 3 sizes = (32, 32) noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) time_step = torch.tensor([10]).to(torch_device) return {"x": noise, "timesteps": time_step} @property def get_input_shape(self): return (3, 32, 32) @property def get_output_shape(self): return (3, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "ch": 32, "ch_mult": (1, 2), "num_res_blocks": 2, "attn_resolutions": (16,), "resolution": 32, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_from_pretrained_hub(self): model, loading_info = UNetModel.from_pretrained("fusing/ddpm_dummy", output_loading_info=True) self.assertIsNotNone(model) self.assertEqual(len(loading_info["missing_keys"]), 0) model.to(torch_device) image = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def test_output_pretrained(self): model = UNetModel.from_pretrained("fusing/ddpm_dummy") model.eval() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) noise = torch.randn(1, model.config.in_channels, model.config.resolution, model.config.resolution) time_step = torch.tensor([10]) with torch.no_grad(): output = model(noise, time_step) output_slice = output[0, -1, -3:, -3:].flatten() # fmt: off expected_output_slice = torch.tensor([0.2891, -0.1899, 0.2595, -0.6214, 0.0968, -0.2622, 0.4688, 0.1311, 0.0053]) # fmt: on self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3)) class GlideSuperResUNetTests(ModelTesterMixin, unittest.TestCase): model_class = GlideSuperResUNetModel @property def dummy_input(self): batch_size = 4 num_channels = 6 sizes = (32, 32) low_res_size = (4, 4) noise = torch.randn((batch_size, num_channels // 2) + sizes).to(torch_device) low_res = torch.randn((batch_size, 3) + low_res_size).to(torch_device) time_step = torch.tensor([10] * noise.shape[0], device=torch_device) return {"x": noise, "timesteps": time_step, "low_res": low_res} @property def get_input_shape(self): return (3, 32, 32) @property def get_output_shape(self): return (6, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "attention_resolutions": (2,), "channel_mult": (1, 2), "in_channels": 6, "out_channels": 6, "model_channels": 32, "num_head_channels": 8, "num_heads_upsample": 1, "num_res_blocks": 2, "resblock_updown": True, "resolution": 32, "use_scale_shift_norm": True, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_output(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) model.eval() with torch.no_grad(): output = model(**inputs_dict) output, _ = torch.split(output, 3, dim=1) self.assertIsNotNone(output) expected_shape = inputs_dict["x"].shape self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") def test_from_pretrained_hub(self): model, loading_info = GlideSuperResUNetModel.from_pretrained( "fusing/glide-super-res-dummy", output_loading_info=True ) self.assertIsNotNone(model) self.assertEqual(len(loading_info["missing_keys"]), 0) model.to(torch_device) image = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def test_output_pretrained(self): model = GlideSuperResUNetModel.from_pretrained("fusing/glide-super-res-dummy") torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) noise = torch.randn(1, 3, 64, 64) low_res = torch.randn(1, 3, 4, 4) time_step = torch.tensor([42] * noise.shape[0]) with torch.no_grad(): output = model(noise, time_step, low_res) output, _ = torch.split(output, 3, dim=1) output_slice = output[0, -1, -3:, -3:].flatten() # fmt: off expected_output_slice = torch.tensor([-22.8782, -23.2652, -15.3966, -22.8034, -23.3159, -15.5640, -15.3970, -15.4614, - 10.4370]) # fmt: on self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3)) class GlideTextToImageUNetModelTests(ModelTesterMixin, unittest.TestCase): model_class = GlideTextToImageUNetModel @property def dummy_input(self): batch_size = 4 num_channels = 3 sizes = (32, 32) transformer_dim = 32 seq_len = 16 noise = torch.randn((batch_size, num_channels) + sizes).to(torch_device) emb = torch.randn((batch_size, seq_len, transformer_dim)).to(torch_device) time_step = torch.tensor([10] * noise.shape[0], device=torch_device) return {"x": noise, "timesteps": time_step, "transformer_out": emb} @property def get_input_shape(self): return (3, 32, 32) @property def get_output_shape(self): return (6, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "attention_resolutions": (2,), "channel_mult": (1, 2), "in_channels": 3, "out_channels": 6, "model_channels": 32, "num_head_channels": 8, "num_heads_upsample": 1, "num_res_blocks": 2, "resblock_updown": True, "resolution": 32, "use_scale_shift_norm": True, "transformer_dim": 32, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_output(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) model.eval() with torch.no_grad(): output = model(**inputs_dict) output, _ = torch.split(output, 3, dim=1) self.assertIsNotNone(output) expected_shape = inputs_dict["x"].shape self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") def test_from_pretrained_hub(self): model, loading_info = GlideTextToImageUNetModel.from_pretrained( "fusing/unet-glide-text2im-dummy", output_loading_info=True ) self.assertIsNotNone(model) self.assertEqual(len(loading_info["missing_keys"]), 0) model.to(torch_device) image = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def test_output_pretrained(self): model = GlideTextToImageUNetModel.from_pretrained("fusing/unet-glide-text2im-dummy") torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) noise = torch.randn((1, model.config.in_channels, model.config.resolution, model.config.resolution)).to( torch_device ) emb = torch.randn((1, 16, model.config.transformer_dim)).to(torch_device) time_step = torch.tensor([10] * noise.shape[0], device=torch_device) model.to(torch_device) with torch.no_grad(): output = model(noise, time_step, emb) output, _ = torch.split(output, 3, dim=1) output_slice = output[0, -1, -3:, -3:].cpu().flatten() # fmt: off expected_output_slice = torch.tensor([2.7766, -10.3558, -14.9149, -0.9376, -14.9175, -17.7679, -5.5565, -12.9521, -12.9845]) # fmt: on self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3)) class UNetLDMModelTests(ModelTesterMixin, unittest.TestCase): model_class = UNetLDMModel @property def dummy_input(self): batch_size = 4 num_channels = 4 sizes = (32, 32) noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) time_step = torch.tensor([10]).to(torch_device) return {"x": noise, "timesteps": time_step} @property def get_input_shape(self): return (4, 32, 32) @property def get_output_shape(self): return (4, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "image_size": 32, "in_channels": 4, "out_channels": 4, "model_channels": 32, "num_res_blocks": 2, "attention_resolutions": (16,), "channel_mult": (1, 2), "num_heads": 2, "conv_resample": True, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_from_pretrained_hub(self): model, loading_info = UNetLDMModel.from_pretrained("fusing/unet-ldm-dummy", output_loading_info=True) self.assertIsNotNone(model) self.assertEqual(len(loading_info["missing_keys"]), 0) model.to(torch_device) image = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def test_output_pretrained(self): model = UNetLDMModel.from_pretrained("fusing/unet-ldm-dummy") model.eval() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size) time_step = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): output = model(noise, time_step) output_slice = output[0, -1, -3:, -3:].flatten() # fmt: off expected_output_slice = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800]) # fmt: on self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3)) class UNetGradTTSModelTests(ModelTesterMixin, unittest.TestCase): model_class = UNetGradTTSModel @property def dummy_input(self): batch_size = 4 num_features = 32 seq_len = 16 noise = floats_tensor((batch_size, num_features, seq_len)).to(torch_device) condition = floats_tensor((batch_size, num_features, seq_len)).to(torch_device) mask = floats_tensor((batch_size, 1, seq_len)).to(torch_device) time_step = torch.tensor([10] * batch_size).to(torch_device) return {"x": noise, "timesteps": time_step, "mu": condition, "mask": mask} @property def get_input_shape(self): return (4, 32, 16) @property def get_output_shape(self): return (4, 32, 16) def prepare_init_args_and_inputs_for_common(self): init_dict = { "dim": 64, "groups": 4, "dim_mults": (1, 2), "n_feats": 32, "pe_scale": 1000, "n_spks": 1, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_from_pretrained_hub(self): model, loading_info = UNetGradTTSModel.from_pretrained("fusing/unet-grad-tts-dummy", output_loading_info=True) self.assertIsNotNone(model) self.assertEqual(len(loading_info["missing_keys"]), 0) model.to(torch_device) image = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def test_output_pretrained(self): model = UNetGradTTSModel.from_pretrained("fusing/unet-grad-tts-dummy") model.eval() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) num_features = model.config.n_feats seq_len = 16 noise = torch.randn((1, num_features, seq_len)) condition = torch.randn((1, num_features, seq_len)) mask = torch.randn((1, 1, seq_len)) time_step = torch.tensor([10]) with torch.no_grad(): output = model(noise, time_step, condition, mask) output_slice = output[0, -3:, -3:].flatten() # fmt: off expected_output_slice = torch.tensor([-0.0690, -0.0531, 0.0633, -0.0660, -0.0541, 0.0650, -0.0656, -0.0555, 0.0617]) # fmt: on self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3)) class PipelineTesterMixin(unittest.TestCase): def test_from_pretrained_save_pretrained(self): # 1. Load models model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32) schedular = DDPMScheduler(timesteps=10) ddpm = DDPMPipeline(model, schedular) with tempfile.TemporaryDirectory() as tmpdirname: ddpm.save_pretrained(tmpdirname) new_ddpm = DDPMPipeline.from_pretrained(tmpdirname) generator = torch.manual_seed(0) image = ddpm(generator=generator) generator = generator.manual_seed(0) new_image = new_ddpm(generator=generator) assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass" @slow def test_from_pretrained_hub(self): model_path = "fusing/ddpm-cifar10" ddpm = DDPMPipeline.from_pretrained(model_path) ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path) ddpm.noise_scheduler.num_timesteps = 10 ddpm_from_hub.noise_scheduler.num_timesteps = 10 generator = torch.manual_seed(0) image = ddpm(generator=generator) generator = generator.manual_seed(0) new_image = ddpm_from_hub(generator=generator) assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass" @slow def test_ddpm_cifar10(self): generator = torch.manual_seed(0) model_id = "fusing/ddpm-cifar10" unet = UNetModel.from_pretrained(model_id) noise_scheduler = DDPMScheduler.from_config(model_id) noise_scheduler = noise_scheduler.set_format("pt") ddpm = DDPMPipeline(unet=unet, noise_scheduler=noise_scheduler) image = ddpm(generator=generator) image_slice = image[0, -1, -3:, -3:].cpu() assert image.shape == (1, 3, 32, 32) expected_slice = torch.tensor([0.2250, 0.3375, 0.2360, 0.0930, 0.3440, 0.3156, 0.1937, 0.3585, 0.1761]) assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2 @slow def test_ddim_cifar10(self): generator = torch.manual_seed(0) model_id = "fusing/ddpm-cifar10" unet = UNetModel.from_pretrained(model_id) noise_scheduler = DDIMScheduler(tensor_format="pt") ddim = DDIMPipeline(unet=unet, noise_scheduler=noise_scheduler) image = ddim(generator=generator, eta=0.0) image_slice = image[0, -1, -3:, -3:].cpu() assert image.shape == (1, 3, 32, 32) expected_slice = torch.tensor( [-0.7383, -0.7385, -0.7298, -0.7364, -0.7414, -0.7239, -0.6737, -0.6813, -0.7068] ) assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2 @slow def test_pndm_cifar10(self): generator = torch.manual_seed(0) model_id = "fusing/ddpm-cifar10" unet = UNetModel.from_pretrained(model_id) noise_scheduler = PNDMScheduler(tensor_format="pt") pndm = PNDMPipeline(unet=unet, noise_scheduler=noise_scheduler) image = pndm(generator=generator) image_slice = image[0, -1, -3:, -3:].cpu() assert image.shape == (1, 3, 32, 32) expected_slice = torch.tensor( [-0.7888, -0.7870, -0.7759, -0.7823, -0.8014, -0.7608, -0.6818, -0.7130, -0.7471] ) assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2 @slow @unittest.skip("Skipping for now as it takes too long") def test_ldm_text2img(self): model_id = "fusing/latent-diffusion-text2im-large" ldm = LatentDiffusionPipeline.from_pretrained(model_id) prompt = "A painting of a squirrel eating a burger" generator = torch.manual_seed(0) image = ldm([prompt], generator=generator, num_inference_steps=20) image_slice = image[0, -1, -3:, -3:].cpu() assert image.shape == (1, 3, 256, 256) expected_slice = torch.tensor([0.7295, 0.7358, 0.7256, 0.7435, 0.7095, 0.6884, 0.7325, 0.6921, 0.6458]) assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2 @slow def test_glide_text2img(self): model_id = "fusing/glide-base" glide = GlidePipeline.from_pretrained(model_id) prompt = "a pencil sketch of a corgi" generator = torch.manual_seed(0) image = glide(prompt, generator=generator, num_inference_steps_upscale=20) image_slice = image[0, :3, :3, -1].cpu() assert image.shape == (1, 256, 256, 3) expected_slice = torch.tensor([0.7119, 0.7073, 0.6460, 0.7780, 0.7423, 0.6926, 0.7378, 0.7189, 0.7784]) assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2 @slow def test_grad_tts(self): model_id = "fusing/grad-tts-libri-tts" grad_tts = GradTTSPipeline.from_pretrained(model_id) noise_scheduler = GradTTSScheduler() grad_tts.noise_scheduler = noise_scheduler text = "Hello world, I missed you so much." generator = torch.manual_seed(0) # generate mel spectograms using text mel_spec = grad_tts(text, generator=generator) assert mel_spec.shape == (1, 80, 143) expected_slice = torch.tensor( [-6.7584, -6.8347, -6.3293, -6.6437, -6.7233, -6.4684, -6.1187, -6.3172, -6.6890] ) assert (mel_spec[0, :3, :3].cpu().flatten() - expected_slice).abs().max() < 1e-2 @slow def test_score_sde_ve_pipeline(self): torch.manual_seed(0) model = NCSNpp.from_pretrained("fusing/ffhq_ncsnpp") scheduler = ScoreSdeVeScheduler.from_config("fusing/ffhq_ncsnpp") sde_ve = ScoreSdeVePipeline(model=model, scheduler=scheduler) image = sde_ve(num_inference_steps=2) expected_image_sum = 3382810112.0 expected_image_mean = 1075.366455078125 assert (image.abs().sum() - expected_image_sum).abs().cpu().item() < 1e-2 assert (image.abs().mean() - expected_image_mean).abs().cpu().item() < 1e-4 @slow def test_score_sde_vp_pipeline(self): model = NCSNpp.from_pretrained("fusing/cifar10-ddpmpp-vp") scheduler = ScoreSdeVpScheduler.from_config("fusing/cifar10-ddpmpp-vp") sde_vp = ScoreSdeVpPipeline(model=model, scheduler=scheduler) torch.manual_seed(0) image = sde_vp(num_inference_steps=10) expected_image_sum = 4183.2012 expected_image_mean = 1.3617 assert (image.abs().sum() - expected_image_sum).abs().cpu().item() < 1e-2 assert (image.abs().mean() - expected_image_mean).abs().cpu().item() < 1e-4 def test_module_from_pipeline(self): model = DiffWave(num_res_layers=4) noise_scheduler = DDPMScheduler(timesteps=12) bddm = BDDMPipeline(model, noise_scheduler) # check if the library name for the diffwave moduel is set to pipeline module self.assertTrue(bddm.config["diffwave"][0] == "pipeline_bddm") # check if we can save and load the pipeline with tempfile.TemporaryDirectory() as tmpdirname: bddm.save_pretrained(tmpdirname) _ = BDDMPipeline.from_pretrained(tmpdirname) # check if the same works using the DifusionPipeline class _ = DiffusionPipeline.from_pretrained(tmpdirname)