# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest import numpy as np import torch from diffusers import DDIMScheduler, DDPMScheduler, PNDMScheduler torch.backends.cuda.matmul.allow_tf32 = False class SchedulerCommonTest(unittest.TestCase): scheduler_classes = () forward_default_kwargs = () @property def dummy_sample(self): batch_size = 4 num_channels = 3 height = 8 width = 8 sample = np.random.rand(batch_size, num_channels, height, width) return sample @property def dummy_sample_deter(self): batch_size = 4 num_channels = 3 height = 8 width = 8 num_elems = batch_size * num_channels * height * width sample = np.arange(num_elems) sample = sample.reshape(num_channels, height, width, batch_size) sample = sample / num_elems sample = sample.transpose(3, 0, 1, 2) return sample def get_scheduler_config(self): raise NotImplementedError def dummy_model(self): def model(sample, t, *args): return sample * t / (t + 1) return model def check_over_configs(self, time_step=0, **config): kwargs = dict(self.forward_default_kwargs) for scheduler_class in self.scheduler_classes: scheduler_class = self.scheduler_classes[0] sample = self.dummy_sample residual = 0.1 * sample scheduler_config = self.get_scheduler_config(**config) scheduler = scheduler_class(**scheduler_config) with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(tmpdirname) new_scheduler = scheduler_class.from_config(tmpdirname) output = scheduler.step(residual, sample, time_step, **kwargs) new_output = new_scheduler.step(residual, sample, time_step, **kwargs) assert np.sum(np.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def check_over_forward(self, time_step=0, **forward_kwargs): kwargs = dict(self.forward_default_kwargs) kwargs.update(forward_kwargs) for scheduler_class in self.scheduler_classes: sample = self.dummy_sample residual = 0.1 * sample scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(tmpdirname) new_scheduler = scheduler_class.from_config(tmpdirname) output = scheduler.step(residual, sample, time_step, **kwargs) new_output = new_scheduler.step(residual, sample, time_step, **kwargs) assert np.sum(np.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def test_from_pretrained_save_pretrained(self): kwargs = dict(self.forward_default_kwargs) for scheduler_class in self.scheduler_classes: sample = self.dummy_sample residual = 0.1 * sample scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(tmpdirname) new_scheduler = scheduler_class.from_config(tmpdirname) output = scheduler.step(residual, sample, 1, **kwargs) new_output = new_scheduler.step(residual, sample, 1, **kwargs) assert np.sum(np.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def test_step_shape(self): kwargs = dict(self.forward_default_kwargs) for scheduler_class in self.scheduler_classes: scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) sample = self.dummy_sample residual = 0.1 * sample output_0 = scheduler.step(residual, sample, 0, **kwargs) output_1 = scheduler.step(residual, sample, 1, **kwargs) self.assertEqual(output_0.shape, sample.shape) self.assertEqual(output_0.shape, output_1.shape) def test_pytorch_equal_numpy(self): kwargs = dict(self.forward_default_kwargs) for scheduler_class in self.scheduler_classes: sample = self.dummy_sample residual = 0.1 * sample sample_pt = torch.tensor(sample) residual_pt = 0.1 * sample_pt scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) scheduler_pt = scheduler_class(tensor_format="pt", **scheduler_config) output = scheduler.step(residual, sample, 1, **kwargs) output_pt = scheduler_pt.step(residual_pt, sample_pt, 1, **kwargs) assert np.sum(np.abs(output - output_pt.numpy())) < 1e-4, "Scheduler outputs are not identical" class DDPMSchedulerTest(SchedulerCommonTest): scheduler_classes = (DDPMScheduler,) def get_scheduler_config(self, **kwargs): config = { "timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**kwargs) return config def test_timesteps(self): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(timesteps=timesteps) def test_betas(self): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=beta_start, beta_end=beta_end) def test_schedules(self): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=schedule) def test_variance_type(self): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=variance) def test_clip_sample(self): for clip_sample in [True, False]: self.check_over_configs(clip_sample=clip_sample) def test_time_indices(self): for t in [0, 500, 999]: self.check_over_forward(time_step=t) def test_variance(self): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) assert np.sum(np.abs(scheduler.get_variance(0) - 0.0)) < 1e-5 assert np.sum(np.abs(scheduler.get_variance(487) - 0.00979)) < 1e-5 assert np.sum(np.abs(scheduler.get_variance(999) - 0.02)) < 1e-5 def test_full_loop_no_noise(self): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) num_trained_timesteps = len(scheduler) model = self.dummy_model() sample = self.dummy_sample_deter for t in reversed(range(num_trained_timesteps)): # 1. predict noise residual residual = model(sample, t) # 2. predict previous mean of sample x_t-1 pred_prev_sample = scheduler.step(residual, sample, t) if t > 0: noise = self.dummy_sample_deter variance = scheduler.get_variance(t) ** (0.5) * noise sample = pred_prev_sample + variance result_sum = np.sum(np.abs(sample)) result_mean = np.mean(np.abs(sample)) assert abs(result_sum.item() - 732.9947) < 1e-2 assert abs(result_mean.item() - 0.9544) < 1e-3 class DDIMSchedulerTest(SchedulerCommonTest): scheduler_classes = (DDIMScheduler,) forward_default_kwargs = (("num_inference_steps", 50), ("eta", 0.0)) def get_scheduler_config(self, **kwargs): config = { "timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**kwargs) return config def test_timesteps(self): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(timesteps=timesteps) def test_betas(self): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=beta_start, beta_end=beta_end) def test_schedules(self): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=schedule) def test_clip_sample(self): for clip_sample in [True, False]: self.check_over_configs(clip_sample=clip_sample) def test_time_indices(self): for t in [1, 10, 49]: self.check_over_forward(time_step=t) def test_inference_steps(self): for t, num_inference_steps in zip([1, 10, 50], [10, 50, 500]): self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps) def test_eta(self): for t, eta in zip([1, 10, 49], [0.0, 0.5, 1.0]): self.check_over_forward(time_step=t, eta=eta) def test_variance(self): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) assert np.sum(np.abs(scheduler.get_variance(0, 50) - 0.0)) < 1e-5 assert np.sum(np.abs(scheduler.get_variance(21, 50) - 0.14771)) < 1e-5 assert np.sum(np.abs(scheduler.get_variance(49, 50) - 0.32460)) < 1e-5 assert np.sum(np.abs(scheduler.get_variance(0, 1000) - 0.0)) < 1e-5 assert np.sum(np.abs(scheduler.get_variance(487, 1000) - 0.00979)) < 1e-5 assert np.sum(np.abs(scheduler.get_variance(999, 1000) - 0.02)) < 1e-5 def test_full_loop_no_noise(self): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) num_inference_steps, eta = 10, 0.1 num_trained_timesteps = len(scheduler) inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps) model = self.dummy_model() sample = self.dummy_sample_deter for t in reversed(range(num_inference_steps)): residual = model(sample, inference_step_times[t]) pred_prev_sample = scheduler.step(residual, sample, t, num_inference_steps, eta) variance = 0 if eta > 0: noise = self.dummy_sample_deter variance = scheduler.get_variance(t, num_inference_steps) ** (0.5) * eta * noise sample = pred_prev_sample + variance result_sum = np.sum(np.abs(sample)) result_mean = np.mean(np.abs(sample)) assert abs(result_sum.item() - 270.6214) < 1e-2 assert abs(result_mean.item() - 0.3524) < 1e-3 class PNDMSchedulerTest(SchedulerCommonTest): scheduler_classes = (PNDMScheduler,) forward_default_kwargs = (("num_inference_steps", 50),) def get_scheduler_config(self, **kwargs): config = { "timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**kwargs) return config def check_over_configs_pmls(self, time_step=0, **config): kwargs = dict(self.forward_default_kwargs) sample = self.dummy_sample residual = 0.1 * sample dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config(**config) scheduler = scheduler_class(**scheduler_config) # copy over dummy past residuals scheduler.ets = dummy_past_residuals[:] scheduler.set_plms_mode() with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(tmpdirname) new_scheduler = scheduler_class.from_config(tmpdirname) # copy over dummy past residuals new_scheduler.ets = dummy_past_residuals[:] new_scheduler.set_plms_mode() output = scheduler.step(residual, sample, time_step, **kwargs) new_output = new_scheduler.step(residual, sample, time_step, **kwargs) assert np.sum(np.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def check_over_forward_pmls(self, time_step=0, **forward_kwargs): kwargs = dict(self.forward_default_kwargs) kwargs.update(forward_kwargs) sample = self.dummy_sample residual = 0.1 * sample dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) # copy over dummy past residuals scheduler.ets = dummy_past_residuals[:] scheduler.set_plms_mode() with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(tmpdirname) new_scheduler = scheduler_class.from_config(tmpdirname) # copy over dummy past residuals new_scheduler.ets = dummy_past_residuals[:] new_scheduler.set_plms_mode() output = scheduler.step(residual, sample, time_step, **kwargs) new_output = new_scheduler.step(residual, sample, time_step, **kwargs) assert np.sum(np.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def test_timesteps(self): for timesteps in [100, 1000]: self.check_over_configs(timesteps=timesteps) def test_timesteps_pmls(self): for timesteps in [100, 1000]: self.check_over_configs_pmls(timesteps=timesteps) def test_betas(self): for beta_start, beta_end in zip([0.0001, 0.001, 0.01], [0.002, 0.02, 0.2]): self.check_over_configs(beta_start=beta_start, beta_end=beta_end) def test_betas_pmls(self): for beta_start, beta_end in zip([0.0001, 0.001, 0.01], [0.002, 0.02, 0.2]): self.check_over_configs_pmls(beta_start=beta_start, beta_end=beta_end) def test_schedules(self): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=schedule) def test_schedules_pmls(self): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=schedule) def test_time_indices(self): for t in [1, 5, 10]: self.check_over_forward(time_step=t) def test_time_indices_pmls(self): for t in [1, 5, 10]: self.check_over_forward_pmls(time_step=t) def test_inference_steps(self): for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100]): self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps) def test_inference_steps_pmls(self): for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100]): self.check_over_forward_pmls(time_step=t, num_inference_steps=num_inference_steps) def test_inference_pmls_no_past_residuals(self): with self.assertRaises(ValueError): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) scheduler.set_plms_mode() scheduler.step(self.dummy_sample, self.dummy_sample, 1, 50) def test_full_loop_no_noise(self): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) num_inference_steps = 10 model = self.dummy_model() sample = self.dummy_sample_deter prk_time_steps = scheduler.get_prk_time_steps(num_inference_steps) for t in range(len(prk_time_steps)): t_orig = prk_time_steps[t] residual = model(sample, t_orig) sample = scheduler.step_prk(residual, sample, t, num_inference_steps) timesteps = scheduler.get_time_steps(num_inference_steps) for t in range(len(timesteps)): t_orig = timesteps[t] residual = model(sample, t_orig) sample = scheduler.step_plms(residual, sample, t, num_inference_steps) result_sum = np.sum(np.abs(sample)) result_mean = np.mean(np.abs(sample)) assert abs(result_sum.item() - 199.1169) < 1e-2 assert abs(result_mean.item() - 0.2593) < 1e-3