import random import numpy as np import torch import torch.nn.functional as F import PIL.Image from accelerate import Accelerator from datasets import load_dataset from diffusers import DDPM, DDPMScheduler, UNetModel from torchvision.transforms import ( Compose, InterpolationMode, Lambda, RandomCrop, RandomHorizontalFlip, RandomVerticalFlip, Resize, ToTensor, ) from tqdm.auto import tqdm from transformers import get_linear_schedule_with_warmup def set_seed(seed): # torch.backends.cudnn.deterministic = True # torch.backends.cudnn.benchmark = False torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) set_seed(0) accelerator = Accelerator() model = UNetModel( attn_resolutions=(16,), ch=128, ch_mult=(1, 2, 2, 2), dropout=0.0, num_res_blocks=2, resamp_with_conv=True, resolution=32, ) noise_scheduler = DDPMScheduler(timesteps=1000) optimizer = torch.optim.Adam(model.parameters(), lr=3e-4) num_epochs = 100 batch_size = 64 gradient_accumulation_steps = 2 augmentations = Compose( [ Resize(32, interpolation=InterpolationMode.BILINEAR), RandomHorizontalFlip(), RandomVerticalFlip(), RandomCrop(32), ToTensor(), Lambda(lambda x: x * 2 - 1), ] ) dataset = load_dataset("huggan/flowers-102-categories", split="train") def transforms(examples): images = [augmentations(image.convert("RGB")) for image in examples["image"]] return {"input": images} dataset.set_transform(transforms) train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True) lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=500, num_training_steps=(len(train_dataloader) * num_epochs) // gradient_accumulation_steps, ) model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, lr_scheduler ) for epoch in range(num_epochs): model.train() pbar = tqdm(total=len(train_dataloader), unit="ba") pbar.set_description(f"Epoch {epoch}") losses = [] for step, batch in enumerate(train_dataloader): clean_images = batch["input"] noisy_images = torch.empty_like(clean_images) noise_samples = torch.empty_like(clean_images) bsz = clean_images.shape[0] timesteps = torch.randint(0, noise_scheduler.timesteps, (bsz,), device=clean_images.device).long() for idx in range(bsz): noise = torch.randn((3, 32, 32)).to(clean_images.device) noise_samples[idx] = noise noisy_images[idx] = noise_scheduler.forward_step(clean_images[idx], noise, timesteps[idx]) if step % gradient_accumulation_steps == 0: with accelerator.no_sync(model): output = model(noisy_images, timesteps) # predict the noise loss = F.l1_loss(output, noise_samples) accelerator.backward(loss) else: output = model(noisy_images, timesteps) loss = F.l1_loss(output, clean_images) accelerator.backward(loss) torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) optimizer.step() lr_scheduler.step() optimizer.zero_grad() loss = loss.detach().item() losses.append(loss) pbar.update(1) pbar.set_postfix(loss=loss, avg_loss=np.mean(losses), lr=optimizer.param_groups[0]["lr"]) optimizer.step() # eval model.eval() with torch.no_grad(): pipeline = DDPM(unet=model, noise_scheduler=noise_scheduler) generator = torch.Generator() generator = generator.manual_seed(0) # run pipeline in inference (sample random noise and denoise) image = pipeline(generator=generator) # process image to PIL image_processed = image.cpu().permute(0, 2, 3, 1) image_processed = (image_processed + 1.0) * 127.5 image_processed = image_processed.type(torch.uint8).numpy() image_pil = PIL.Image.fromarray(image_processed[0]) # save image pipeline.save_pretrained("./flowers-ddpm") image_pil.save(f"./flowers-ddpm/test_{epoch}.png")