# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import unittest import torch from diffusers import UNet2DConditionModel, UNet2DModel from diffusers.testing_utils import floats_tensor, slow, torch_device from .test_modeling_common import ModelTesterMixin torch.backends.cuda.matmul.allow_tf32 = False class UnetModelTests(ModelTesterMixin, unittest.TestCase): model_class = UNet2DModel @property def dummy_input(self): batch_size = 4 num_channels = 3 sizes = (32, 32) noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) time_step = torch.tensor([10]).to(torch_device) return {"sample": noise, "timestep": time_step} @property def input_shape(self): return (3, 32, 32) @property def output_shape(self): return (3, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "block_out_channels": (32, 64), "down_block_types": ("DownBlock2D", "AttnDownBlock2D"), "up_block_types": ("AttnUpBlock2D", "UpBlock2D"), "attention_head_dim": None, "out_channels": 3, "in_channels": 3, "layers_per_block": 2, "sample_size": 32, } inputs_dict = self.dummy_input return init_dict, inputs_dict # TODO(Patrick) - Re-add this test after having correctly added the final VE checkpoints # def test_output_pretrained(self): # model = UNet2DModel.from_pretrained("fusing/ddpm_dummy_update", subfolder="unet") # model.eval() # # torch.manual_seed(0) # if torch.cuda.is_available(): # torch.cuda.manual_seed_all(0) # # noise = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) # time_step = torch.tensor([10]) # # with torch.no_grad(): # output = model(noise, time_step).sample # # output_slice = output[0, -1, -3:, -3:].flatten() # fmt: off # expected_output_slice = torch.tensor([0.2891, -0.1899, 0.2595, -0.6214, 0.0968, -0.2622, 0.4688, 0.1311, 0.0053]) # fmt: on # self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2)) class UNetLDMModelTests(ModelTesterMixin, unittest.TestCase): model_class = UNet2DModel @property def dummy_input(self): batch_size = 4 num_channels = 4 sizes = (32, 32) noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) time_step = torch.tensor([10]).to(torch_device) return {"sample": noise, "timestep": time_step} @property def input_shape(self): return (4, 32, 32) @property def output_shape(self): return (4, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "sample_size": 32, "in_channels": 4, "out_channels": 4, "layers_per_block": 2, "block_out_channels": (32, 64), "attention_head_dim": 32, "down_block_types": ("DownBlock2D", "DownBlock2D"), "up_block_types": ("UpBlock2D", "UpBlock2D"), } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_from_pretrained_hub(self): model, loading_info = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True) self.assertIsNotNone(model) self.assertEqual(len(loading_info["missing_keys"]), 0) model.to(torch_device) image = model(**self.dummy_input).sample assert image is not None, "Make sure output is not None" def test_output_pretrained(self): model = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update") model.eval() model.to(torch_device) noise = torch.randn( 1, model.config.in_channels, model.config.sample_size, model.config.sample_size, generator=torch.manual_seed(0), ) noise = noise.to(torch_device) time_step = torch.tensor([10] * noise.shape[0]).to(torch_device) with torch.no_grad(): output = model(noise, time_step).sample output_slice = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off expected_output_slice = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800]) # fmt: on self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-3)) class UNet2DConditionModelTests(ModelTesterMixin, unittest.TestCase): model_class = UNet2DConditionModel @property def dummy_input(self): batch_size = 4 num_channels = 4 sizes = (32, 32) noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) time_step = torch.tensor([10]).to(torch_device) encoder_hidden_states = floats_tensor((batch_size, 4, 32)).to(torch_device) return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states} @property def input_shape(self): return (4, 32, 32) @property def output_shape(self): return (4, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "block_out_channels": (32, 64), "down_block_types": ("CrossAttnDownBlock2D", "DownBlock2D"), "up_block_types": ("UpBlock2D", "CrossAttnUpBlock2D"), "cross_attention_dim": 32, "attention_head_dim": 8, "out_channels": 4, "in_channels": 4, "layers_per_block": 2, "sample_size": 32, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict).eval() model.to(torch_device) out = model(**inputs_dict).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() out.sum().backward() # now we save the output and parameter gradients that we will use for comparison purposes with # the non-checkpointed run. output_not_checkpointed = out.data.clone() grad_not_checkpointed = {} for name, param in model.named_parameters(): grad_not_checkpointed[name] = param.grad.data.clone() model.enable_gradient_checkpointing() out = model(**inputs_dict).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() out.sum().backward() # now we save the output and parameter gradients that we will use for comparison purposes with # the non-checkpointed run. output_checkpointed = out.data.clone() grad_checkpointed = {} for name, param in model.named_parameters(): grad_checkpointed[name] = param.grad.data.clone() # compare the output and parameters gradients self.assertTrue((output_checkpointed == output_not_checkpointed).all()) for name in grad_checkpointed: self.assertTrue(torch.allclose(grad_checkpointed[name], grad_not_checkpointed[name], atol=5e-5)) # TODO(Patrick) - Re-add this test after having cleaned up LDM # def test_output_pretrained_spatial_transformer(self): # model = UNetLDMModel.from_pretrained("fusing/unet-ldm-dummy-spatial") # model.eval() # # torch.manual_seed(0) # if torch.cuda.is_available(): # torch.cuda.manual_seed_all(0) # # noise = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) # context = torch.ones((1, 16, 64), dtype=torch.float32) # time_step = torch.tensor([10] * noise.shape[0]) # # with torch.no_grad(): # output = model(noise, time_step, context=context) # # output_slice = output[0, -1, -3:, -3:].flatten() # fmt: off # expected_output_slice = torch.tensor([61.3445, 56.9005, 29.4339, 59.5497, 60.7375, 34.1719, 48.1951, 42.6569, 25.0890]) # fmt: on # # self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3)) # class NCSNppModelTests(ModelTesterMixin, unittest.TestCase): model_class = UNet2DModel @property def dummy_input(self, sizes=(32, 32)): batch_size = 4 num_channels = 3 noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) time_step = torch.tensor(batch_size * [10]).to(dtype=torch.int32, device=torch_device) return {"sample": noise, "timestep": time_step} @property def input_shape(self): return (3, 32, 32) @property def output_shape(self): return (3, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "block_out_channels": [32, 64, 64, 64], "in_channels": 3, "layers_per_block": 1, "out_channels": 3, "time_embedding_type": "fourier", "norm_eps": 1e-6, "mid_block_scale_factor": math.sqrt(2.0), "norm_num_groups": None, "down_block_types": [ "SkipDownBlock2D", "AttnSkipDownBlock2D", "SkipDownBlock2D", "SkipDownBlock2D", ], "up_block_types": [ "SkipUpBlock2D", "SkipUpBlock2D", "AttnSkipUpBlock2D", "SkipUpBlock2D", ], } inputs_dict = self.dummy_input return init_dict, inputs_dict @slow def test_from_pretrained_hub(self): model, loading_info = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256", output_loading_info=True) self.assertIsNotNone(model) self.assertEqual(len(loading_info["missing_keys"]), 0) model.to(torch_device) inputs = self.dummy_input noise = floats_tensor((4, 3) + (256, 256)).to(torch_device) inputs["sample"] = noise image = model(**inputs) assert image is not None, "Make sure output is not None" @slow def test_output_pretrained_ve_mid(self): model = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256") model.to(torch_device) torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) batch_size = 4 num_channels = 3 sizes = (256, 256) noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device) time_step = torch.tensor(batch_size * [1e-4]).to(torch_device) with torch.no_grad(): output = model(noise, time_step).sample output_slice = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off expected_output_slice = torch.tensor([-4836.2231, -6487.1387, -3816.7969, -7964.9253, -10966.2842, -20043.6016, 8137.0571, 2340.3499, 544.6114]) # fmt: on self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2)) def test_output_pretrained_ve_large(self): model = UNet2DModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update") model.to(torch_device) torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) batch_size = 4 num_channels = 3 sizes = (32, 32) noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device) time_step = torch.tensor(batch_size * [1e-4]).to(torch_device) with torch.no_grad(): output = model(noise, time_step).sample output_slice = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off expected_output_slice = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256]) # fmt: on self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2)) def test_forward_with_norm_groups(self): # not required for this model pass