# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import math import tracemalloc import unittest import torch from diffusers import UNet2DConditionModel, UNet2DModel from diffusers.utils import ( floats_tensor, load_hf_numpy, logging, require_torch_gpu, slow, torch_all_close, torch_device, ) from parameterized import parameterized from ..test_modeling_common import ModelTesterMixin logger = logging.get_logger(__name__) torch.backends.cuda.matmul.allow_tf32 = False class Unet2DModelTests(ModelTesterMixin, unittest.TestCase): model_class = UNet2DModel @property def dummy_input(self): batch_size = 4 num_channels = 3 sizes = (32, 32) noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) time_step = torch.tensor([10]).to(torch_device) return {"sample": noise, "timestep": time_step} @property def input_shape(self): return (3, 32, 32) @property def output_shape(self): return (3, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "block_out_channels": (32, 64), "down_block_types": ("DownBlock2D", "AttnDownBlock2D"), "up_block_types": ("AttnUpBlock2D", "UpBlock2D"), "attention_head_dim": None, "out_channels": 3, "in_channels": 3, "layers_per_block": 2, "sample_size": 32, } inputs_dict = self.dummy_input return init_dict, inputs_dict class UNetLDMModelTests(ModelTesterMixin, unittest.TestCase): model_class = UNet2DModel @property def dummy_input(self): batch_size = 4 num_channels = 4 sizes = (32, 32) noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) time_step = torch.tensor([10]).to(torch_device) return {"sample": noise, "timestep": time_step} @property def input_shape(self): return (4, 32, 32) @property def output_shape(self): return (4, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "sample_size": 32, "in_channels": 4, "out_channels": 4, "layers_per_block": 2, "block_out_channels": (32, 64), "attention_head_dim": 32, "down_block_types": ("DownBlock2D", "DownBlock2D"), "up_block_types": ("UpBlock2D", "UpBlock2D"), } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_from_pretrained_hub(self): model, loading_info = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True) self.assertIsNotNone(model) self.assertEqual(len(loading_info["missing_keys"]), 0) model.to(torch_device) image = model(**self.dummy_input).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU") def test_from_pretrained_accelerate(self): model, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True) model.to(torch_device) image = model(**self.dummy_input).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU") def test_from_pretrained_accelerate_wont_change_results(self): # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` model_accelerate, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True) model_accelerate.to(torch_device) model_accelerate.eval() noise = torch.randn( 1, model_accelerate.config.in_channels, model_accelerate.config.sample_size, model_accelerate.config.sample_size, generator=torch.manual_seed(0), ) noise = noise.to(torch_device) time_step = torch.tensor([10] * noise.shape[0]).to(torch_device) arr_accelerate = model_accelerate(noise, time_step)["sample"] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() model_normal_load, _ = UNet2DModel.from_pretrained( "fusing/unet-ldm-dummy-update", output_loading_info=True, low_cpu_mem_usage=False ) model_normal_load.to(torch_device) model_normal_load.eval() arr_normal_load = model_normal_load(noise, time_step)["sample"] assert torch_all_close(arr_accelerate, arr_normal_load, rtol=1e-3) @unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU") def test_memory_footprint_gets_reduced(self): torch.cuda.empty_cache() gc.collect() tracemalloc.start() # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` model_accelerate, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True) model_accelerate.to(torch_device) model_accelerate.eval() _, peak_accelerate = tracemalloc.get_traced_memory() del model_accelerate torch.cuda.empty_cache() gc.collect() model_normal_load, _ = UNet2DModel.from_pretrained( "fusing/unet-ldm-dummy-update", output_loading_info=True, low_cpu_mem_usage=False ) model_normal_load.to(torch_device) model_normal_load.eval() _, peak_normal = tracemalloc.get_traced_memory() tracemalloc.stop() assert peak_accelerate < peak_normal def test_output_pretrained(self): model = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update") model.eval() model.to(torch_device) noise = torch.randn( 1, model.config.in_channels, model.config.sample_size, model.config.sample_size, generator=torch.manual_seed(0), ) noise = noise.to(torch_device) time_step = torch.tensor([10] * noise.shape[0]).to(torch_device) with torch.no_grad(): output = model(noise, time_step).sample output_slice = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off expected_output_slice = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800]) # fmt: on self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-3)) class UNet2DConditionModelTests(ModelTesterMixin, unittest.TestCase): model_class = UNet2DConditionModel @property def dummy_input(self): batch_size = 4 num_channels = 4 sizes = (32, 32) noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) time_step = torch.tensor([10]).to(torch_device) encoder_hidden_states = floats_tensor((batch_size, 4, 32)).to(torch_device) return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states} @property def input_shape(self): return (4, 32, 32) @property def output_shape(self): return (4, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "block_out_channels": (32, 64), "down_block_types": ("CrossAttnDownBlock2D", "DownBlock2D"), "up_block_types": ("UpBlock2D", "CrossAttnUpBlock2D"), "cross_attention_dim": 32, "attention_head_dim": 8, "out_channels": 4, "in_channels": 4, "layers_per_block": 2, "sample_size": 32, } inputs_dict = self.dummy_input return init_dict, inputs_dict @unittest.skipIf(torch_device == "mps", "Gradient checkpointing skipped on MPS") def test_gradient_checkpointing(self): # enable deterministic behavior for gradient checkpointing init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) assert not model.is_gradient_checkpointing and model.training out = model(**inputs_dict).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() labels = torch.randn_like(out) loss = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing model_2 = self.model_class(**init_dict) # clone model model_2.load_state_dict(model.state_dict()) model_2.to(torch_device) model_2.enable_gradient_checkpointing() assert model_2.is_gradient_checkpointing and model_2.training out_2 = model_2(**inputs_dict).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_2.zero_grad() loss_2 = (out_2 - labels).mean() loss_2.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_2).abs() < 1e-5) named_params = dict(model.named_parameters()) named_params_2 = dict(model_2.named_parameters()) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5)) class NCSNppModelTests(ModelTesterMixin, unittest.TestCase): model_class = UNet2DModel @property def dummy_input(self, sizes=(32, 32)): batch_size = 4 num_channels = 3 noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) time_step = torch.tensor(batch_size * [10]).to(dtype=torch.int32, device=torch_device) return {"sample": noise, "timestep": time_step} @property def input_shape(self): return (3, 32, 32) @property def output_shape(self): return (3, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "block_out_channels": [32, 64, 64, 64], "in_channels": 3, "layers_per_block": 1, "out_channels": 3, "time_embedding_type": "fourier", "norm_eps": 1e-6, "mid_block_scale_factor": math.sqrt(2.0), "norm_num_groups": None, "down_block_types": [ "SkipDownBlock2D", "AttnSkipDownBlock2D", "SkipDownBlock2D", "SkipDownBlock2D", ], "up_block_types": [ "SkipUpBlock2D", "SkipUpBlock2D", "AttnSkipUpBlock2D", "SkipUpBlock2D", ], } inputs_dict = self.dummy_input return init_dict, inputs_dict @slow def test_from_pretrained_hub(self): model, loading_info = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256", output_loading_info=True) self.assertIsNotNone(model) self.assertEqual(len(loading_info["missing_keys"]), 0) model.to(torch_device) inputs = self.dummy_input noise = floats_tensor((4, 3) + (256, 256)).to(torch_device) inputs["sample"] = noise image = model(**inputs) assert image is not None, "Make sure output is not None" @slow def test_output_pretrained_ve_mid(self): model = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256") model.to(torch_device) torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) batch_size = 4 num_channels = 3 sizes = (256, 256) noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device) time_step = torch.tensor(batch_size * [1e-4]).to(torch_device) with torch.no_grad(): output = model(noise, time_step).sample output_slice = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off expected_output_slice = torch.tensor([-4836.2231, -6487.1387, -3816.7969, -7964.9253, -10966.2842, -20043.6016, 8137.0571, 2340.3499, 544.6114]) # fmt: on self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2)) def test_output_pretrained_ve_large(self): model = UNet2DModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update") model.to(torch_device) torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) batch_size = 4 num_channels = 3 sizes = (32, 32) noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device) time_step = torch.tensor(batch_size * [1e-4]).to(torch_device) with torch.no_grad(): output = model(noise, time_step).sample output_slice = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off expected_output_slice = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256]) # fmt: on self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2)) def test_forward_with_norm_groups(self): # not required for this model pass @slow class UNet2DConditionModelIntegrationTests(unittest.TestCase): def get_file_format(self, seed, shape): return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def get_latents(self, seed=0, shape=(4, 4, 64, 64), fp16=False): dtype = torch.float16 if fp16 else torch.float32 image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) return image def get_unet_model(self, fp16=False, model_id="CompVis/stable-diffusion-v1-4"): revision = "fp16" if fp16 else None torch_dtype = torch.float16 if fp16 else torch.float32 model = UNet2DConditionModel.from_pretrained( model_id, subfolder="unet", torch_dtype=torch_dtype, revision=revision ) model.to(torch_device).eval() return model def get_encoder_hidden_states(self, seed=0, shape=(4, 77, 768), fp16=False): dtype = torch.float16 if fp16 else torch.float32 hidden_states = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) return hidden_states @parameterized.expand( [ # fmt: off [33, 4, [-0.4424, 0.1510, -0.1937, 0.2118, 0.3746, -0.3957, 0.0160, -0.0435]], [47, 0.55, [-0.1508, 0.0379, -0.3075, 0.2540, 0.3633, -0.0821, 0.1719, -0.0207]], [21, 0.89, [-0.6479, 0.6364, -0.3464, 0.8697, 0.4443, -0.6289, -0.0091, 0.1778]], [9, 1000, [0.8888, -0.5659, 0.5834, -0.7469, 1.1912, -0.3923, 1.1241, -0.4424]], # fmt: on ] ) @require_torch_gpu def test_compvis_sd_v1_4(self, seed, timestep, expected_slice): model = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4") latents = self.get_latents(seed) encoder_hidden_states = self.get_encoder_hidden_states(seed) with torch.no_grad(): sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample assert sample.shape == latents.shape output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=1e-3) @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) @require_torch_gpu def test_compvis_sd_v1_4_fp16(self, seed, timestep, expected_slice): model = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4", fp16=True) latents = self.get_latents(seed, fp16=True) encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True) with torch.no_grad(): sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample assert sample.shape == latents.shape output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) @parameterized.expand( [ # fmt: off [33, 4, [-0.4430, 0.1570, -0.1867, 0.2376, 0.3205, -0.3681, 0.0525, -0.0722]], [47, 0.55, [-0.1415, 0.0129, -0.3136, 0.2257, 0.3430, -0.0536, 0.2114, -0.0436]], [21, 0.89, [-0.7091, 0.6664, -0.3643, 0.9032, 0.4499, -0.6541, 0.0139, 0.1750]], [9, 1000, [0.8878, -0.5659, 0.5844, -0.7442, 1.1883, -0.3927, 1.1192, -0.4423]], # fmt: on ] ) @require_torch_gpu def test_compvis_sd_v1_5(self, seed, timestep, expected_slice): model = self.get_unet_model(model_id="runwayml/stable-diffusion-v1-5") latents = self.get_latents(seed) encoder_hidden_states = self.get_encoder_hidden_states(seed) with torch.no_grad(): sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample assert sample.shape == latents.shape output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=1e-3) @parameterized.expand( [ # fmt: off [83, 4, [-0.2695, -0.1669, 0.0073, -0.3181, -0.1187, -0.1676, -0.1395, -0.5972]], [17, 0.55, [-0.1290, -0.2588, 0.0551, -0.0916, 0.3286, 0.0238, -0.3669, 0.0322]], [8, 0.89, [-0.5283, 0.1198, 0.0870, -0.1141, 0.9189, -0.0150, 0.5474, 0.4319]], [3, 1000, [-0.5601, 0.2411, -0.5435, 0.1268, 1.1338, -0.2427, -0.0280, -1.0020]], # fmt: on ] ) @require_torch_gpu def test_compvis_sd_v1_5_fp16(self, seed, timestep, expected_slice): model = self.get_unet_model(model_id="runwayml/stable-diffusion-v1-5", fp16=True) latents = self.get_latents(seed, fp16=True) encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True) with torch.no_grad(): sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample assert sample.shape == latents.shape output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) @parameterized.expand( [ # fmt: off [33, 4, [-0.7639, 0.0106, -0.1615, -0.3487, -0.0423, -0.7972, 0.0085, -0.4858]], [47, 0.55, [-0.6564, 0.0795, -1.9026, -0.6258, 1.8235, 1.2056, 1.2169, 0.9073]], [21, 0.89, [0.0327, 0.4399, -0.6358, 0.3417, 0.4120, -0.5621, -0.0397, -1.0430]], [9, 1000, [0.1600, 0.7303, -1.0556, -0.3515, -0.7440, -1.2037, -1.8149, -1.8931]], # fmt: on ] ) @require_torch_gpu def test_compvis_sd_inpaint(self, seed, timestep, expected_slice): model = self.get_unet_model(model_id="runwayml/stable-diffusion-inpainting") latents = self.get_latents(seed, shape=(4, 9, 64, 64)) encoder_hidden_states = self.get_encoder_hidden_states(seed) with torch.no_grad(): sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample assert sample.shape == (4, 4, 64, 64) output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=1e-3) @parameterized.expand( [ # fmt: off [83, 4, [-0.1047, -1.7227, 0.1067, 0.0164, -0.5698, -0.4172, -0.1388, 1.1387]], [17, 0.55, [0.0975, -0.2856, -0.3508, -0.4600, 0.3376, 0.2930, -0.2747, -0.7026]], [8, 0.89, [-0.0952, 0.0183, -0.5825, -0.1981, 0.1131, 0.4668, -0.0395, -0.3486]], [3, 1000, [0.4790, 0.4949, -1.0732, -0.7158, 0.7959, -0.9478, 0.1105, -0.9741]], # fmt: on ] ) @require_torch_gpu def test_compvis_sd_inpaint_fp16(self, seed, timestep, expected_slice): model = self.get_unet_model(model_id="runwayml/stable-diffusion-inpainting", fp16=True) latents = self.get_latents(seed, shape=(4, 9, 64, 64), fp16=True) encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True) with torch.no_grad(): sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample assert sample.shape == (4, 4, 64, 64) output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)