# coding=utf-8 # Copyright 2022 HuggingFace Inc.. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import shutil import subprocess import sys import tempfile import unittest from typing import List from accelerate.utils import write_basic_config from diffusers.utils import slow logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() # These utils relate to ensuring the right error message is received when running scripts class SubprocessCallException(Exception): pass def run_command(command: List[str], return_stdout=False): """ Runs `command` with `subprocess.check_output` and will potentially return the `stdout`. Will also properly capture if an error occurred while running `command` """ try: output = subprocess.check_output(command, stderr=subprocess.STDOUT) if return_stdout: if hasattr(output, "decode"): output = output.decode("utf-8") return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f"Command `{' '.join(command)}` failed with the following error:\n\n{e.output.decode()}" ) from e stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class ExamplesTestsAccelerate(unittest.TestCase): @classmethod def setUpClass(cls): super().setUpClass() cls._tmpdir = tempfile.mkdtemp() cls.configPath = os.path.join(cls._tmpdir, "default_config.yml") write_basic_config(save_location=cls.configPath) cls._launch_args = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def tearDownClass(cls): super().tearDownClass() shutil.rmtree(cls._tmpdir) @slow def test_train_unconditional(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" examples/unconditional_image_generation/train_unconditional.py --dataset_name huggan/few-shot-aurora --resolution 64 --output_dir {tmpdir} --train_batch_size 4 --num_epochs 1 --gradient_accumulation_steps 1 --learning_rate 1e-3 --lr_warmup_steps 5 --mixed_precision fp16 """.split() run_command(self._launch_args + test_args, return_stdout=True) # save_pretrained smoke test self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.bin"))) self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json"))) # logging test self.assertTrue(len(os.listdir(os.path.join(tmpdir, "logs", "train_unconditional"))) > 0) @slow def test_textual_inversion(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" examples/textual_inversion/textual_inversion.py --pretrained_model_name_or_path runwayml/stable-diffusion-v1-5 --train_data_dir docs/source/imgs --learnable_property object --placeholder_token --initializer_token toy --resolution 64 --train_batch_size 1 --gradient_accumulation_steps 2 --max_train_steps 10 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} --mixed_precision fp16 """.split() run_command(self._launch_args + test_args) # save_pretrained smoke test self.assertTrue(os.path.isfile(os.path.join(tmpdir, "learned_embeds.bin")))