# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Conversion script for the NCSNPP checkpoints. """ import argparse import json import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNet2DModel def convert_ncsnpp_checkpoint(checkpoint, config): """ Takes a state dict and the path to """ new_model_architecture = UNet2DModel(**config) new_model_architecture.time_proj.W.data = checkpoint["all_modules.0.W"].data new_model_architecture.time_proj.weight.data = checkpoint["all_modules.0.W"].data new_model_architecture.time_embedding.linear_1.weight.data = checkpoint["all_modules.1.weight"].data new_model_architecture.time_embedding.linear_1.bias.data = checkpoint["all_modules.1.bias"].data new_model_architecture.time_embedding.linear_2.weight.data = checkpoint["all_modules.2.weight"].data new_model_architecture.time_embedding.linear_2.bias.data = checkpoint["all_modules.2.bias"].data new_model_architecture.conv_in.weight.data = checkpoint["all_modules.3.weight"].data new_model_architecture.conv_in.bias.data = checkpoint["all_modules.3.bias"].data new_model_architecture.conv_norm_out.weight.data = checkpoint[list(checkpoint.keys())[-4]].data new_model_architecture.conv_norm_out.bias.data = checkpoint[list(checkpoint.keys())[-3]].data new_model_architecture.conv_out.weight.data = checkpoint[list(checkpoint.keys())[-2]].data new_model_architecture.conv_out.bias.data = checkpoint[list(checkpoint.keys())[-1]].data module_index = 4 def set_attention_weights(new_layer, old_checkpoint, index): new_layer.query.weight.data = old_checkpoint[f"all_modules.{index}.NIN_0.W"].data.T new_layer.key.weight.data = old_checkpoint[f"all_modules.{index}.NIN_1.W"].data.T new_layer.value.weight.data = old_checkpoint[f"all_modules.{index}.NIN_2.W"].data.T new_layer.query.bias.data = old_checkpoint[f"all_modules.{index}.NIN_0.b"].data new_layer.key.bias.data = old_checkpoint[f"all_modules.{index}.NIN_1.b"].data new_layer.value.bias.data = old_checkpoint[f"all_modules.{index}.NIN_2.b"].data new_layer.proj_attn.weight.data = old_checkpoint[f"all_modules.{index}.NIN_3.W"].data.T new_layer.proj_attn.bias.data = old_checkpoint[f"all_modules.{index}.NIN_3.b"].data new_layer.group_norm.weight.data = old_checkpoint[f"all_modules.{index}.GroupNorm_0.weight"].data new_layer.group_norm.bias.data = old_checkpoint[f"all_modules.{index}.GroupNorm_0.bias"].data def set_resnet_weights(new_layer, old_checkpoint, index): new_layer.conv1.weight.data = old_checkpoint[f"all_modules.{index}.Conv_0.weight"].data new_layer.conv1.bias.data = old_checkpoint[f"all_modules.{index}.Conv_0.bias"].data new_layer.norm1.weight.data = old_checkpoint[f"all_modules.{index}.GroupNorm_0.weight"].data new_layer.norm1.bias.data = old_checkpoint[f"all_modules.{index}.GroupNorm_0.bias"].data new_layer.conv2.weight.data = old_checkpoint[f"all_modules.{index}.Conv_1.weight"].data new_layer.conv2.bias.data = old_checkpoint[f"all_modules.{index}.Conv_1.bias"].data new_layer.norm2.weight.data = old_checkpoint[f"all_modules.{index}.GroupNorm_1.weight"].data new_layer.norm2.bias.data = old_checkpoint[f"all_modules.{index}.GroupNorm_1.bias"].data new_layer.time_emb_proj.weight.data = old_checkpoint[f"all_modules.{index}.Dense_0.weight"].data new_layer.time_emb_proj.bias.data = old_checkpoint[f"all_modules.{index}.Dense_0.bias"].data if new_layer.in_channels != new_layer.out_channels or new_layer.up or new_layer.down: new_layer.conv_shortcut.weight.data = old_checkpoint[f"all_modules.{index}.Conv_2.weight"].data new_layer.conv_shortcut.bias.data = old_checkpoint[f"all_modules.{index}.Conv_2.bias"].data for i, block in enumerate(new_model_architecture.downsample_blocks): has_attentions = hasattr(block, "attentions") for j in range(len(block.resnets)): set_resnet_weights(block.resnets[j], checkpoint, module_index) module_index += 1 if has_attentions: set_attention_weights(block.attentions[j], checkpoint, module_index) module_index += 1 if hasattr(block, "downsamplers") and block.downsamplers is not None: set_resnet_weights(block.resnet_down, checkpoint, module_index) module_index += 1 block.skip_conv.weight.data = checkpoint[f"all_modules.{module_index}.Conv_0.weight"].data block.skip_conv.bias.data = checkpoint[f"all_modules.{module_index}.Conv_0.bias"].data module_index += 1 set_resnet_weights(new_model_architecture.mid_block.resnets[0], checkpoint, module_index) module_index += 1 set_attention_weights(new_model_architecture.mid_block.attentions[0], checkpoint, module_index) module_index += 1 set_resnet_weights(new_model_architecture.mid_block.resnets[1], checkpoint, module_index) module_index += 1 for i, block in enumerate(new_model_architecture.up_blocks): has_attentions = hasattr(block, "attentions") for j in range(len(block.resnets)): set_resnet_weights(block.resnets[j], checkpoint, module_index) module_index += 1 if has_attentions: set_attention_weights( block.attentions[0], checkpoint, module_index ) # why can there only be a single attention layer for up? module_index += 1 if hasattr(block, "resnet_up") and block.resnet_up is not None: block.skip_norm.weight.data = checkpoint[f"all_modules.{module_index}.weight"].data block.skip_norm.bias.data = checkpoint[f"all_modules.{module_index}.bias"].data module_index += 1 block.skip_conv.weight.data = checkpoint[f"all_modules.{module_index}.weight"].data block.skip_conv.bias.data = checkpoint[f"all_modules.{module_index}.bias"].data module_index += 1 set_resnet_weights(block.resnet_up, checkpoint, module_index) module_index += 1 new_model_architecture.conv_norm_out.weight.data = checkpoint[f"all_modules.{module_index}.weight"].data new_model_architecture.conv_norm_out.bias.data = checkpoint[f"all_modules.{module_index}.bias"].data module_index += 1 new_model_architecture.conv_out.weight.data = checkpoint[f"all_modules.{module_index}.weight"].data new_model_architecture.conv_out.bias.data = checkpoint[f"all_modules.{module_index}.bias"].data return new_model_architecture.state_dict() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default="/Users/arthurzucker/Work/diffusers/ArthurZ/diffusion_pytorch_model.bin", type=str, required=False, help="Path to the checkpoint to convert.", ) parser.add_argument( "--config_file", default="/Users/arthurzucker/Work/diffusers/ArthurZ/config.json", type=str, required=False, help="The config json file corresponding to the architecture.", ) parser.add_argument( "--dump_path", default="/Users/arthurzucker/Work/diffusers/ArthurZ/diffusion_model_new.pt", type=str, required=False, help="Path to the output model.", ) args = parser.parse_args() checkpoint = torch.load(args.checkpoint_path, map_location="cpu") with open(args.config_file) as f: config = json.loads(f.read()) converted_checkpoint = convert_ncsnpp_checkpoint( checkpoint, config, ) if "sde" in config: del config["sde"] model = UNet2DModel(**config) model.load_state_dict(converted_checkpoint) try: scheduler = ScoreSdeVeScheduler.from_config("/".join(args.checkpoint_path.split("/")[:-1])) pipe = ScoreSdeVePipeline(unet=model, scheduler=scheduler) pipe.save_pretrained(args.dump_path) except: model.save_pretrained(args.dump_path)